Patents by Inventor Hans-Juergen Eickelmann

Hans-Juergen Eickelmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180040753
    Abstract: A method for fabricating a solar cell includes providing a first substrate with at least one protruding element on the first substrate. The method removes a portion of a lower conducting layer located on the first substrate, wherein the removed portion of the lower conducting layer is located near the at least one protruding element. The method removes a first portion of an active layer located on the lower conducting layer. The method deposits an upper conducting layer on the active layer, wherein the conducting layer covers the at least one protruding element. The method removes a portion of the upper conducting layer, wherein the removed portion of the upper conducting is located near the at least one protruding element.
    Type: Application
    Filed: August 2, 2016
    Publication date: February 8, 2018
    Inventors: Hans-Juergen Eickelmann, Ruediger Kellmann, Markus Schmidt
  • Publication number: 20180006179
    Abstract: Methods are provided for fabricating photovoltaic cell contacts, which include: providing a block copolymer layer above an electrical contact layer of the photovoltaic cell, the block copolymer layer being self-assembled by phase segregation to include multiple structures of a first polymer material surrounded, at least in part, by a second polymer material; selectively etching the block copolymer layer to remove the multiple structures, forming holes in the block copolymer layer; and using the holes in the block copolymer layer to facilitate providing electrical contacts between a light absorption layer of the photovoltaic cell and the electrical contact layer. For instance, the holes in the copolymer layer may be used in etching a passivation layer over the electrical contact layer to form nano-sized contact openings in the passivation layer to the contact layer. Once provided, the cell's light absorption material forms contacts extending through the contact openings in the passivation layer.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Inventors: Christian BECKER, Hans-Juergen EICKELMANN, Hauke PFLUEGER, Markus SCHMIDT
  • Patent number: 9859451
    Abstract: Photovoltaic cells, photovoltaic devices, and methods of fabrication are provided. The photovoltaic cells include a transparent substrate to allow light to enter the photovoltaic cell through the substrate, and a light absorption layer associated with the substrate. The light absorption layer has opposite first and second surfaces, with the first surface being closer to the transparent substrate than the second surface. A passivation layer is disposed over the second surface of the light absorption layer, and a plurality of first discrete contacts and a plurality of second discrete contacts are provided within the passivation layer to facilitate electrical coupling to the light absorption layer. A first electrode and a second electrode are disposed over the passivation layer to contact the plurality of first discrete contacts and the plurality of second discrete contacts, respectively. The first and second electrodes include a photon-reflective material.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: January 2, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hans-Juergen Eickelmann, Ruediger Kellmann, Hartmut Kuehl, Markus Schmidt
  • Patent number: 9859452
    Abstract: Methods are provided for fabricating photovoltaic cell contacts, which include: providing a block copolymer layer above an electrical contact layer of the photovoltaic cell, the block copolymer layer being self-assembled by phase segregation to include multiple structures of a first polymer material surrounded, at least in part, by a second polymer material; selectively etching the block copolymer layer to remove the multiple structures, forming holes in the block copolymer layer; and using the holes in the block copolymer layer to facilitate providing electrical contacts between a light absorption layer of the photovoltaic cell and the electrical contact layer. For instance, the holes in the copolymer layer may be used in etching a passivation layer over the electrical contact layer to form nano-sized contact openings in the passivation layer to the contact layer. Once provided, the cell's light absorption material forms contacts extending through the contact openings in the passivation layer.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: January 2, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christian Becker, Hans-Juergen Eickelmann, Hauke Pflueger, Markus Schmidt
  • Publication number: 20170338364
    Abstract: Lateral multi junction photovoltaic cells, devices, and methods of fabrication are provided. The photovoltaic cells include a plurality of photovoltaic subcells mechanically stacked together in a stack. Each photovoltaic subcell includes a subcell substrate, and a light absorption structure associated with the substrate. Each light absorption structure is optimized for a respective defined spectral range of incoming radiation, with the light absorption structures of multiple subcells of the plurality of photovoltaic subcells being optimized for different spectral ranges, and being offset in the stack relative to an optical axis to avoid overlap. The photovoltaic cell further includes a spectrally-dispersive optical element, with the photovoltaic subcells in the stack being respectively located and aligned relative to the optical element based, at least in part, on the respective spectral ranges of the subcells' light absorption structures.
    Type: Application
    Filed: May 17, 2016
    Publication date: November 23, 2017
    Inventors: Hans-Juergen EICKELMANN, Ruediger KELLMANN, Markus SCHMIDT
  • Publication number: 20170338368
    Abstract: An integrated thin-film lateral multi junction solar device and fabrication method are provided. The device includes, for instance, a substrate, and a plurality of stacks extending vertically from the substrate. Each stack may include layers, and be electrically isolated against another stack. Each stack may also include an energy storage device above the substrate, a solar cell above the energy storage device, a transparent medium above the solar cell, and a micro-optic layer of spectrally dispersive and concentrating optical devices above the transparent medium. Furthermore, the device may include a first power converter connected between the energy storage device and a power bus, and a second power converter connected between the solar cell and the power bus. Further, different solar cells of different stacks may have different absorption characteristics.
    Type: Application
    Filed: August 9, 2017
    Publication date: November 23, 2017
    Inventors: Hans-Juergen Eickelmann, Ruediger Kellmann, Hartmut Kuehl, Markus Schmidt
  • Patent number: 9825192
    Abstract: Manufacture for an improved stacked-layered thin film solar cell. Solar cell has reduced absorber thickness and an improved back contact for Copper Indium Gallium Selenide solar cells. The back contact provides improved reflectance particularly for infrared wavelengths while still maintaining ohmic contact to the semiconductor absorber. This reflectance is achieved by producing a back contact having a highly reflecting metal separated from an absorbing layer with a dielectric layer.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: November 21, 2017
    Assignee: International Business Machines Corporation
    Inventors: Hans-Juergen Eickelmann, Michael Haag, Ruediger Kellmann, Markus Schmidt, Johannes Windeln
  • Patent number: 9773927
    Abstract: Manufacture of an improved stacked-layered thin film solar cell. The solar cell has reduced absorber thickness and an improved back contact for Copper Indium Gallium Selenide solar cells. The back contact provides improved reflectance particularly for infrared wavelengths while still maintaining ohmic contact to the semiconductor absorber. This reflectance is achieved by producing a back contact having a highly reflecting metal separated from an absorbing layer with a dielectric layer.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: September 26, 2017
    Assignee: International Business Machines Corporation
    Inventors: Hans-Juergen Eickelmann, Michael Haag, Ruediger Kellmann, Markus Schmidt, Johannes Windeln
  • Patent number: 9758861
    Abstract: Embodiments relate to a sputter chamber comprising both a target surface and an anode surface. The sputter chamber has both an ingress and an egress to allow passage of a gas. The sputter chamber further includes a target substrate. A secondary material flexibly changes the composition of the target substrate in-situ by changing coverage of the target by the secondary material. Gas entering the sputter chamber interacts with the changed composition of the target. The interaction discharges a plasma alloy and the alloy condenses on the anode surface in the sputter chamber. The condensed alloy produces an alloy film.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: September 12, 2017
    Assignee: International Business Machines Corporation
    Inventors: Hans-Juergen Eickelmann, Thorsten Muehge, Erik Rueger, Markus Schmidt
  • Patent number: 9755099
    Abstract: Embodiments of the present invention include a method for manufacturing, and a structure for a thin film solar module. The method of manufacturing includes fabricating a thin film solar cell and fabricating an electronic conversion unit (ECU) on a single substrate. The thin film solar cell has at least one solar cell diode on a substrate. The ECU has at least one transistor on the substrate. The ECU may further comprise a capacitor and an inductor. The ECU is integrated on the substrate monolithically and electrically connected with the thin film solar cell. The ECU and the thin film solar cell interconnect to form a circuit on the substrate. The ECU is electrically connected to a microcontroller on the solar cell module.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: September 5, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hans-Juergen Eickelmann, Ruediger Kellman, Hartmut Kuehl, Markus Schmidt
  • Patent number: 9735309
    Abstract: An integrated thin-film lateral multi-junction solar device and fabrication method are provided. The device includes, for instance, a substrate, and a plurality of stacks extending vertically from the substrate. Each stack may include layers, and be electrically isolated against another stack. Each stack may also include an energy storage device above the substrate, a solar cell above the energy storage device, a transparent medium above the solar cell, and a micro-optic layer of spectrally dispersive and concentrating optical devices above the transparent medium. Furthermore, the device may include a first power converter connected between the energy storage device and a power bus, and a second power converter connected between the solar cell and the power bus. Further, different solar cells of different stacks may have different absorption characteristics.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: August 15, 2017
    Assignee: International Business Machines Corporation
    Inventors: Hans-Juergen Eickelmann, Ruediger Kellmann, Hartmut Kuehl, Markus Schmidt
  • Publication number: 20170179313
    Abstract: A stacked-layered thin film solar cell. The solar cell has reduced absorber thickness and an improved back contact for Copper Indium Gallium Selenide solar cells. The back contact provides improved reflectance particularly for infrared wavelengths while still maintaining ohmic contact to the semiconductor absorber. This reflectance is achieved by producing a back contact having a highly reflecting metal separated from an absorbing layer with a dielectric layer.
    Type: Application
    Filed: March 3, 2017
    Publication date: June 22, 2017
    Applicant: International Business Machines Corporation
    Inventors: Hans-Juergen Eickelmann, Michael Haag, Ruediger Kellmann, Markus Schmidt, Johannes Windeln
  • Patent number: 9634166
    Abstract: Photovoltaic cells, photovoltaic devices, and methods of fabrication are provided. The photovoltaic cells include a transparent substrate to allow light to enter the photovoltaic cell through the substrate, and a light absorption layer associated with the substrate. The light absorption layer has opposite first and second surfaces, with the first surface being closer to the transparent substrate than the second surface. A passivation layer is disposed over the second surface of the light absorption layer, and a plurality of first discrete contacts and a plurality of second discrete contacts are provided within the passivation layer to facilitate electrical coupling to the light absorption layer. A first electrode and a second electrode are disposed over the passivation layer to contact the plurality of first discrete contacts and the plurality of second discrete contacts, respectively. The first and second electrodes include a photon-reflective material.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: April 25, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hans-Juergen Eickelmann, Ruediger Kellmann, Hartmut Kuehl, Markus Schmidt
  • Patent number: 9634171
    Abstract: An integrated thin-film lateral multi-junction solar device and fabrication method are provided. The device includes, for instance, a substrate, and a plurality of stacks extending vertically from the substrate. Each stack may include layers, and be electrically isolated against another stack. Each stack may also include an energy storage device above the substrate, a solar cell above the energy storage device, a transparent medium above the solar cell, and a micro-optic layer of spectrally dispersive and concentrating optical devices above the transparent medium. Furthermore, the device may include a first power converter connected between the energy storage device and a power bus, and a second power converter connected between the solar cell and the power bus. Further, different solar cells of different stacks may have different absorption characteristics.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: April 25, 2017
    Assignee: International Business Machines Corporation
    Inventors: Hans-Juergen Eickelmann, Ruediger Kellmann, Hartmut Kuehl, Markus Schmidt
  • Patent number: 9583649
    Abstract: Embodiments of the invention related to a method for manufacturing a thin film solar cell backside contact. Prior to application of materials, a planar substrate is provided and an associated backside of the substrate is modified to form one or more pedestals. The modified substrate is layered with multiple layers of material, including a conducting layer, a reflective layer, and a passivation layer. The layered backside substrate is polished to expose portions of the conducting layer at discrete locations on the backside of the substrate. The exposed portions of the conducting layer maintain direct electrical communication between an absorber layer deposited on the layered backside substrate and the conducting layer.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: February 28, 2017
    Assignee: International Business Machines Corporation
    Inventors: Hans-Juergen Eickelmann, Ruediger Kellmann, Hartmut Kuehl, Markus Schmidt
  • Patent number: 9577130
    Abstract: Embodiments relate to a thin film solar cell backside contact. A planar substrate is provided and an associated backside of the substrate is modified to form one or more pedestals. The modified substrate is layered with multiple layers of material, including a conducting layer, a reflective layer, and a passivation layer. The layered backside substrate is polished to expose portions of the conducting layer at discrete locations on the backside of the substrate. The exposed portions of the conducting layer maintain direct electrical communication between an absorber layer deposited on the layered backside substrate and the conducting layer.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: February 21, 2017
    Assignee: International Business Machines Corporation
    Inventors: Hans-Juergen Eickelmann, Ruediger Kellmann, Hartmut Kuehl, Markus Schmidt
  • Publication number: 20170033255
    Abstract: An integrated thin-film lateral multi-junction solar device and fabrication method are provided. The device includes, for instance, a substrate, and a plurality of stacks extending vertically from the substrate. Each stack may include layers, and be electrically isolated against another stack. Each stack may also include an energy storage device above the substrate, a solar cell above the energy storage device, a transparent medium above the solar cell, and a micro-optic layer of spectrally dispersive and concentrating optical devices above the transparent medium. Furthermore, the device may include a first power converter connected between the energy storage device and a power bus, and a second power converter connected between the solar cell and the power bus. Further, different solar cells of different stacks may have different absorption characteristics.
    Type: Application
    Filed: October 14, 2016
    Publication date: February 2, 2017
    Inventors: Hans-Juergen Eickelmann, Ruediger Kellmann, Hartmut Kuehl, Markus Schmidt
  • Publication number: 20160380133
    Abstract: Photovoltaic cells, photovoltaic devices, and methods of fabrication are provided. The photovoltaic cells include a transparent substrate to allow light to enter the photovoltaic cell through the substrate, and a light absorption layer associated with the substrate. The light absorption layer has opposite first and second surfaces, with the first surface being closer to the transparent substrate than the second surface. A passivation layer is disposed over the second surface of the light absorption layer, and a plurality of first discrete contacts and a plurality of second discrete contacts are provided within the passivation layer to facilitate electrical coupling to the light absorption layer. A first electrode and a second electrode are disposed over the passivation layer to contact the plurality of first discrete contacts and the plurality of second discrete contacts, respectively. The first and second electrodes include a photon-reflective material.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventors: Hans-Juergen EICKELMANN, Ruediger KELLMANN, Hartmut KUEHL, Markus SCHMIDT
  • Publication number: 20160380139
    Abstract: Photovoltaic cells, photovoltaic devices, and methods of fabrication are provided. The photovoltaic cells include a transparent substrate to allow light to enter the photovoltaic cell through the substrate, and a light absorption layer associated with the substrate. The light absorption layer has opposite first and second surfaces, with the first surface being closer to the transparent substrate than the second surface. A passivation layer is disposed over the second surface of the light absorption layer, and a plurality of first discrete contacts and a plurality of second discrete contacts are provided within the passivation layer to facilitate electrical coupling to the light absorption layer. A first electrode and a second electrode are disposed over the passivation layer to contact the plurality of first discrete contacts and the plurality of second discrete contacts, respectively. The first and second electrodes include a photon-reflective material.
    Type: Application
    Filed: September 30, 2015
    Publication date: December 29, 2016
    Inventors: Hans-Juergen EICKELMANN, Ruediger KELLMANN, Hartmut KUEHL, Markus SCHMIDT
  • Publication number: 20160372617
    Abstract: Embodiments relate to a thin film solar cell backside contact. A planar substrate is provided and an associated backside of the substrate is modified to form one or more pedestals. The modified substrate is layered with multiple layers of material, including a conducting layer, a reflective layer, and a passivation layer. The layered backside substrate is polished to expose portions of the conducting layer at discrete locations on the backside of the substrate. The exposed portions of the conducting layer maintain direct electrical communication between an absorber layer deposited on the layered backside substrate and the conducting layer.
    Type: Application
    Filed: August 29, 2016
    Publication date: December 22, 2016
    Applicant: International Business Machines Corporation
    Inventors: Hans-Juergen Eickelmann, Ruediger Kellmann, Hartmut Kuehl, Markus Schmidt