Patents by Inventor Harold W. Kennel

Harold W. Kennel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200266296
    Abstract: Integrated circuit transistor structures are disclosed that reduce band-to-band tunneling between the channel region and the source/drain region of the transistor, without adversely increasing the extrinsic resistance of the device. In an example embodiment, the structure includes one or more spacer configured to separate the source and/or drain from the channel region. The spacer(s) regions comprise a semiconductor material that provides a relatively high conduction band offset (CBO) and a relatively low valence band offset (VBO) for PMOS devices, and a relatively high VBO and a relatively low CBO for NMOS devices. In some cases, the spacer includes silicon, germanium, and carbon (e.g., for devices having germanium channel). The proportions may be at least 10% silicon by atomic percentage, at least 85% germanium by atomic percentage, and at least 1% carbon by atomic percentage. Other embodiments are implemented with III-V materials.
    Type: Application
    Filed: November 6, 2017
    Publication date: August 20, 2020
    Applicant: INTEL CORPORATION
    Inventors: Benjamin Chu-Kung, Jack T. Kavalieros, Seung Hoon Sung, Siddharth Chouksey, Harold W. Kennel, Dipanjan Basu, Ashish Agrawal, Glenn A. Glass, Tahir Ghani, Anand S. Murthy
  • Patent number: 10734488
    Abstract: Embodiments related to transistors and integrated circuits having aluminum indium phosphide subfins and germanium channels, systems incorporating such transistors, and methods for forming them are discussed.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: August 4, 2020
    Assignee: Intel Corporation
    Inventors: Matthew V. Metz, Willy Rachmady, Harold W. Kennel, Van H. Le, Benjamin Chu-Kung, Jack T. Kavalieros, Gilbert Dewey
  • Publication number: 20200212186
    Abstract: Embodiments related to transistors and integrated circuits having aluminum indium phosphide subfins and germanium channels, systems incorporating such transistors, and methods for forming them are discussed.
    Type: Application
    Filed: September 11, 2015
    Publication date: July 2, 2020
    Applicant: Intel Corporation
    Inventors: Matthew V. Metz, Willy Rachmady, Harold W. Kennel, Van H. Le, Benjamin Chu-Kung, Jack T. Kavalieros, Gilbert Dewey
  • Publication number: 20200203169
    Abstract: Group III-V semiconductor devices having asymmetric source and drain structures and their methods of fabrication are described. In an example, an integrated circuit structure includes a gallium arsenide layer on a substrate. A channel structure is on the gallium arsenide layer. The channel structure includes indium, gallium and arsenic. A source structure is at a first end of the channel structure and a drain structure is at a second end of the channel structure. The drain structure has a wider band gap than the source structure. A gate structure is over the channel structure.
    Type: Application
    Filed: September 28, 2017
    Publication date: June 25, 2020
    Inventors: Sean T. MA, Gilbert DEWEY, Willy RACHMADY, Harold W. KENNEL, Cheng-Ying HUANG, Matthew V. METZ, Nicholas G. MINUTILLO, Jack T. KAVALIEROS, Anand S. MURTHY
  • Patent number: 10692973
    Abstract: Techniques are disclosed for forming germanium (Ge)-rich channel transistors including one or more dopant diffusion barrier elements. The introduction of one or more dopant diffusion elements into at least a portion of a given source/drain (S/D) region helps inhibit the undesired diffusion of dopant (e.g., B, P, or As) into the adjacent Ge-rich channel region. In some embodiments, the elements that may be included in a given S/D region to help prevent the undesired dopant diffusion include at least one of tin and relatively high silicon. Further, in some such embodiments, carbon may also be included to help prevent the undesired dopant diffusion. In some embodiments, the one or more dopant diffusion barrier elements may be included in an interfacial layer between a given S/D region and the Ge-rich channel region and/or throughout at least a majority of a given S/D region. Numerous embodiments, configurations, and variations will be apparent.
    Type: Grant
    Filed: April 1, 2017
    Date of Patent: June 23, 2020
    Assignee: INTEL CORPORATION
    Inventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Benjamin Chu-Kung, Seung Hoon Sung, Jack T. Kavalieros, Tahir Ghani, Harold W. Kennel
  • Publication number: 20200185501
    Abstract: Disclosed herein are tri-gate and all-around-gate transistor arrangements, and related methods and devices. For example, in some embodiments, a transistor arrangement may include a channel material disposed over a substrate; a gate electrode of a first tri-gate or all-around-gate transistor, disposed over a first part of the channel material; and a gate electrode of a second tri-gate or all-around-gate transistor, disposed over a second part of the channel material. The transistor arrangement may further include a device isolation structure made of a fixed charge dielectric material disposed over a third part of the channel material, the third part being between the first part and the second part of the channel material.
    Type: Application
    Filed: December 1, 2016
    Publication date: June 11, 2020
    Applicant: Intel Corporation
    Inventors: Sean T. Ma, Willy Rachmady, Gilbert W. Dewey, Aaron D. Lilak, Justin R. Weber, Harold W. Kennel, Cheng-Ying Huang, Matthew V. Metz, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
  • Publication number: 20200144374
    Abstract: An electronic device comprises a first layer on a buffer layer on a substrate. A source/drain region is deposited on the buffer layer. The first layer comprises a first semiconductor. The source/drain region comprises a second semiconductor. The second semiconductor has a bandgap that is smaller than a bandgap of the first semiconductor. A gate electrode is deposited on the first layer.
    Type: Application
    Filed: June 30, 2017
    Publication date: May 7, 2020
    Inventors: Sean T. MA, Cory E. WEBER, Dipanjan BASU, Harold W. KENNEL, Willy RACHMADY, Gilbert DEWEY, Jack T. KAVALIEROS, Anand S. MURTHY, Tahir GHANI, Matthew V. METZ, Cheng-ying HUANG
  • Publication number: 20200083354
    Abstract: An apparatus is provided which comprises: a semiconductor region on a substrate, a gate stack on the semiconductor region, a source region of doped semiconductor material on the substrate adjacent a first side of the semiconductor region, a cap region on the substrate adjacent a second side of the semiconductor region, wherein the cap region comprises semiconductor material of a higher band gap than the semiconductor region, and a drain region comprising doped semiconductor material on the cap region. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: December 31, 2016
    Publication date: March 12, 2020
    Applicant: Intel Corporation
    Inventors: Seung Hoon SUNG, Dipanjan BASU, Ashish AGRAWAL, Van H. LE, Benjamin CHU-KUNG, Harold W. KENNEL, Glenn A. GLASS, Anand S. MURTHY, Jack T. KAVALIEROS, Tahir GHANI
  • Publication number: 20200066843
    Abstract: An electronic device comprises a channel layer on a buffer layer on a substrate. The channel layer has a first portion and a second portion adjacent to the first portion. The first portion comprises a first semiconductor. The second portion comprises a second semiconductor that has a bandgap greater than a bandgap of the first semiconductor.
    Type: Application
    Filed: June 30, 2017
    Publication date: February 27, 2020
    Inventors: Sean T. MA, Gilbert DEWEY, Willy RACHMADY, Matthew V. METZ, Cheng-Ying HUANG, Harold W. KENNEL, Jack T. KAVALIEROS, Anand S. MURTHY, Tahir GHANI
  • Publication number: 20200066855
    Abstract: An apparatus including a transistor device disposed on a surface of a circuit substrate, the device including a body including opposing sidewalls defining a width dimension and a channel material including indium, the channel material including a profile at a base thereof that promotes indium atom diffusivity changes in the channel material in a direction away from the sidewalls. A method including forming a transistor device body on a circuit substrate, the transistor device body including opposing sidewalls and including a buffer material and a channel material on the buffer material, the channel material including indium and the buffer material includes a facet that promotes indium atom diffusivity changes in the channel material in a direction away from the sidewalls; and forming a gate stack on the channel material.
    Type: Application
    Filed: April 1, 2016
    Publication date: February 27, 2020
    Inventors: Chandra S. MOHAPATRA, Glenn A. GLASS, Harold W. KENNEL, Anand S. MURTHY, Willy RACHMADY, Gilbert DEWEY, Sean T. MA, Matthew V. METZ, Jack T. KAVALIEROS, Tahir GHANI
  • Patent number: 10573715
    Abstract: Embodiments of the present disclosure describe techniques for backside isolation for devices of an integrated circuit (IC) and associated configurations. The IC may include a plurality of devices (e.g., transistors) formed on a semiconductor substrate. The semiconductor substrate may include substrate regions on which one or more devices are formed. Trenches may be disposed between the devices on the semiconductor substrate. Portions of the semiconductor substrate between the substrate regions may be removed to expose the corresponding trenches and form isolation regions. An insulating material may be formed in the isolation regions. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: February 25, 2020
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Rishabh Mehandru, Harold W. Kennel, Paul B. Fischer, Stephen M. Cea
  • Publication number: 20200044059
    Abstract: Disclosed herein are tri-gate transistor arrangements, and related methods and devices. For example, in some embodiments, a transistor arrangement may include a fin stack shaped as a fin extending away from a base, and a subfin dielectric stack. The fin includes a subfin portion and a channel portion, the subfin portion being closer to the base than the channel portion. The subfin dielectric stack includes a transistor dielectric material, and a fixed charge liner material disposed between the transistor dielectric material and the subfin portion of the fin.
    Type: Application
    Filed: December 14, 2016
    Publication date: February 6, 2020
    Applicant: Intel Corporation
    Inventors: Sean T. Ma, Aaron D. Lilak, Justin R. Weber, Harold W. Kennel, Willy Rachmady, Gilbert W. Dewey, Cheng-Ying Huang, Matthew V. Metz, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
  • Patent number: 10546858
    Abstract: Monolithic finFETs including a majority carrier channel in a first III-V compound semiconductor material disposed on a second III-V compound semiconductor. While a mask, such as a sacrificial gate stack, is covering the channel region, a source of an amphoteric dopant is deposited over exposed fin sidewalls and diffused into the first III-V compound semiconductor material. The amphoteric dopant preferentially activates as a donor within the first III-V material and an acceptor with the second III-V material, providing transistor tip doping with a p-n junction between the first and second III-V materials. A lateral spacer is deposited to cover the tip portion of the fin. Source/drain regions in regions of the fin not covered by the mask or spacer electrically couple to the channel through the tip region. The channel mask is replaced with a gate stack.
    Type: Grant
    Filed: June 27, 2015
    Date of Patent: January 28, 2020
    Assignee: Intel Corporation
    Inventors: Jack T. Kavalieros, Chandra S. Mohapatra, Anand S. Murthy, Willy Rachmady, Matthew V. Metz, Gilbert Dewey, Tahir Ghani, Harold W. Kennel
  • Patent number: 10529808
    Abstract: An apparatus including a transistor device on a substrate including an intrinsic layer including a channel; a source and a drain on opposite sides of the channel; and a diffusion barrier between the intrinsic layer and each of the source and the drain, the diffusion barrier including a conduction band energy that is less than a conduction band energy of the channel and greater than a material of the source and drain. A method including defining an area of an intrinsic layer on a substrate for a channel of a transistor device; forming a diffusion barrier layer in an area defined for a source and a drain; and forming a source on the diffusion barrier layer in the area defined for the source and forming a drain in the area defined for the drain.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: January 7, 2020
    Assignee: Intel Corporation
    Inventors: Chandra S. Mohapatra, Harold W. Kennel, Glenn A. Glass, Will Rachmady, Gilbert Dewey, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani, Matthew V. Metz, Sean T. Ma
  • Publication number: 20200006510
    Abstract: In various embodiments, the disclosure describes transistors having non-vertical gates. In one embodiment, the non-vertical gates can have a curved or wide angle gate in order to reduce the electric field crowing on the drain side of the gate edge and/or portions having corners and thereby reduce leakage current in the transistor. In one embodiment, the non-vertical gate can be generated by one or more etching steps (for example, isotropic etching steps) of an underlying channel during the fabrication of a transistor having the non-vertical gate. In one embodiment, the non-vertical gate can be generated by one or more directional etching steps that may expose various facets having predetermined orientations of a source and/or drain associated with the transistor.
    Type: Application
    Filed: March 31, 2017
    Publication date: January 2, 2020
    Applicant: Intel Corporation
    Inventors: Cheng-Ying Huang, Sean T. Ma, Willy Rachmady, Gilbert Dewey, Matthew V. Metz, Harold W. Kennel, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
  • Patent number: 10497814
    Abstract: Semiconductor devices including a subfin including a first III-V semiconductor alloy and a channel including a second III-V semiconductor alloy are described. In some embodiments the semiconductor devices include a substrate including a trench defined by at least two trench sidewalls, wherein the first III-V semiconductor alloy is deposited on the substrate within the trench and the second III-V semiconductor alloy is epitaxially grown on the first III-V semiconductor alloy. In some embodiments, a conduction band offset between the first III-V semiconductor alloy and the second III-V semiconductor alloy is greater than or equal to about 0.3 electron volts. Methods of making such semiconductor devices and computing devices including such semiconductor devices are also described.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: December 3, 2019
    Assignee: INTEL CORPORATION
    Inventors: Harold W. Kennel, Matthew V. Metz, Willy Rachmady, Gilbert Dewey, Chandra S. Mohapatra, Anand S. Murthy, Jack T. Kavalieros, Tahir Ghani
  • Publication number: 20190348500
    Abstract: Techniques are disclosed for forming germanium (Ge)-rich channel transistors including one or more dopant diffusion barrier elements. The introduction of one or more dopant diffusion elements into at least a portion of a given source/drain (S/D) region helps inhibit the undesired diffusion of dopant (e.g., B, P, or As) into the adjacent Ge-rich channel region. In some embodiments, the elements that may be included in a given S/D region to help prevent the undesired dopant diffusion include at least one of tin and relatively high silicon. Further, in some such embodiments, carbon may also be included to help prevent the undesired dopant diffusion. In some embodiments, the one or more dopant diffusion barrier elements may be included in an interfacial layer between a given S/D region and the Ge-rich channel region and/or throughout at least a majority of a given S/D region. Numerous embodiments, configurations, and variations will be apparent.
    Type: Application
    Filed: April 1, 2017
    Publication date: November 14, 2019
    Applicant: Intel Corporation
    Inventors: Glenn A. GLASS, Anand S. MURTHY, Karthik JAMBUNATHAN, Benjamin CHU-KUNG, Seung Hoon SUNG, Jack T. KAVALIEROS, Tahir GHANI, Harold W. KENNEL
  • Publication number: 20190348415
    Abstract: Techniques are disclosed for forming transistors employing a source/drain (S/D) cap layer for Ge-rich S/D regions to, e.g., help suppress contact metal piping. Contact metal piping occurs when metal material from the S/D contact region diffuses into the channel region, which can lead to a reduction of the effective gate length and can even cause device shorting/failure. The S/D cap layer includes silicon (Si) and/or carbon (C) to help suppress the continuous reaction of contact metal material with the Ge-rich S/D material (e.g., Ge or SiGe with at least 50% Ge concentration by atomic percentage), thereby reducing or preventing the diffusion of metal from the S/D contact region into the channel region as subsequent processing occurs. In addition, the Si and/or C-based S/D cap layer is more selective to contact trench etch than the doped Ge-rich material included in the S/D region, thereby increasing controllability during contact trench etch processing.
    Type: Application
    Filed: March 30, 2017
    Publication date: November 14, 2019
    Applicant: INTEL CORPORATION
    Inventors: SEUNG HOON SUNG, GLENN A. GLASS, HAROLD W. KENNEL, ASHISH AGRAWAL, VAN H. LE, BENJAMIN CHU-KUNG, SIDDHARTH CHOUKSEY, ANAND S. MURTHY, JACK T. KAVALIEROS, TAHIR GHANI
  • Publication number: 20190341453
    Abstract: An apparatus is provided which comprises: a semiconductor region on a substrate, a gate stack on the semiconductor region, a source region of doped semiconductor material on the substrate adjacent a first side of the semiconductor region, a drain region of doped semiconductor material on the substrate adjacent a second side of the semiconductor region, and a transition region in the drain region, adjacent the semiconductor region, wherein the transition region comprises varying dopant concentrations that increase in a direction away from the semiconductor region. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: December 31, 2016
    Publication date: November 7, 2019
    Applicant: Intel Corporation
    Inventors: Seung Hoon Sung, Dipanjan Basu, Glenn A. Glass, Harold W. Kennel, Ashish Agrawal, Benjamin Chu-Kung, Anand S. Murthy, Jack T. Kavalieros, Tahir Ghani
  • Patent number: 10446685
    Abstract: III-V compound semiconductor devices, such transistors, may be formed in active regions of a III-V semiconductor material disposed over a silicon substrate. A heterojunction between an active region of III-V semiconductor and the substrate provides a diffusion barrier retarding diffusion of silicon from the substrate into III-V semiconductor material where the silicon might otherwise behave as an electrically active amphoteric contaminate. In some embodiments, the heterojunction is provided within a base portion of a sub-fin disposed between the substrate and a fin containing a transistor channel region. The heterojunction positioned closer to the substrate than active fin region ensures thermal diffusion of silicon atoms is contained away from the active region of a III-V finFET.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: October 15, 2019
    Assignee: Intel Corporation
    Inventors: Chandra S. Mohapatra, Matthew V. Metz, Harold W. Kennel, Gilbert Dewey, Willy Rachmady, Anand S. Murthy, Jack T. Kavalieros, Tahir Ghani