Patents by Inventor Harold W. Kennel

Harold W. Kennel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180158944
    Abstract: Techniques are disclosed for forming high mobility NMOS fin-based transistors having an indium-rich channel region electrically isolated from the sub-fin by an aluminum-containing layer. The aluminum aluminum-containing layer may be provisioned within an indium-containing layer that includes the indium-rich channel region, or may be provisioned between the indium-containing layer and the sub-fin. The indium concentration of the indium-containing layer may be graded from an indium-poor concentration near the aluminum-containing barrier layer to an indium-rich concentration at the indium-rich channel layer. The indium-rich channel layer is at or otherwise proximate to the top of the fin, according to some example embodiments. The grading can be intentional and/or due to the effect of reorganization of atoms at the interface of indium-rich channel layer and the aluminum-containing barrier layer. Numerous variations and embodiments will be appreciated in light of this disclosure.
    Type: Application
    Filed: June 23, 2015
    Publication date: June 7, 2018
    Applicant: INTEL CORPORATION
    Inventors: CHANDRA S. MOHAPATRA, ANAND S. MURTHY, GLENN A. GLASS, TAHIR GHANI, WILLY RACHMADY, JACK T. KAVALIEROS, GILBERT DEWEY, MATTHEW V. METZ, HAROLD W. KENNEL
  • Publication number: 20180151733
    Abstract: Techniques are disclosed for forming p-MOS transistors having one or more carbon-based interface layers between epitaxially grown S/D regions and the channel region. In some cases, the carbon-based interface layer(s) may comprise a single layer having a carbon content of greater than 20% carbon and a thickness of 0.5-8 nm. In some cases, the carbon-based interface layer(s) may comprise a single layer having a carbon content of less than 5% and a thickness of 2-10 nm. In some such cases, the single layer may also comprise boron-doped silicon (Si:B) or boron-doped silicon germanium (SiGe:B). In some cases, one or more additional interface layers may be deposited on the carbon-based interface layer(s), where the additional interface layer(s) comprises Si:B and/or SiGe:B. The techniques can be used to improve short channel effects and improve the effective gate length of a resulting transistor.
    Type: Application
    Filed: June 19, 2015
    Publication date: May 31, 2018
    Applicant: INTEL CORPORATION
    Inventors: GLENN A. GLASS, PATRICK H. KEYS, HAROLD W. KENNEL, RISHABH MEHANDRU, ANAND S. MURTHY, KARTHIK JAMBUNATHAN
  • Patent number: 9966440
    Abstract: Techniques are disclosed for forming transistor devices having reduced parasitic contact resistance relative to conventional devices. The techniques can be implemented, for example, using a metal contact such as one or more metals/alloys on silicon or silicon germanium (SiGe) source/drain regions. In accordance with one example embodiment, an intermediate tin doped III-V material layer is provided between the source/drain and contact metal to significantly reduce contact resistance. Partial or complete oxidation of the tin doped layer can be used to further improve contact resistance. In some example cases, the tin doped III-V material layer has a semiconducting phase near the substrate and an oxide phase near the metal contact. Numerous transistor configurations and suitable fabrication processes will be apparent in light of this disclosure, including both planar and non-planar transistor structures (e.g., FinFETs, nanowire transistors, etc), as well as strained and unstrained channel structures.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: May 8, 2018
    Assignee: INTEL CORPORATION
    Inventors: Glenn A. Glass, Anand S. Murthy, Michael J. Jackson, Harold W. Kennel
  • Patent number: 9935107
    Abstract: Techniques and methods related to dual strained cladding layers for semiconductor devices, and systems incorporating such semiconductor devices.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: April 3, 2018
    Assignee: Intel Corporation
    Inventors: Stephen M Cea, Roza Kotlyar, Harold W Kennel, Kelin J Kuhn, Tahir Ghani
  • Patent number: 9905651
    Abstract: Ge and III-V channel semiconductor devices having maximized compliance and free surface relaxation and methods of fabricating such Ge and III-V channel semiconductor devices are described. For example, a semiconductor device includes a semiconductor fin disposed above a semiconductor substrate. The semiconductor fin has a central protruding or recessed segment spaced apart from a pair of protruding outer segments along a length of the semiconductor fin. A cladding layer region is disposed on the central protruding or recessed segment of the semiconductor fin. A gate stack is disposed on the cladding layer region. Source/drain regions are disposed in the pair of protruding outer segments of the semiconductor fin.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: February 27, 2018
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Sansaptak Dasgupta, Niti Goel, Van H. Le, Marko Radosavljevic, Gilbert Dewey, Niloy Mukherjee, Matthew V. Metz, Willy Rachmady, Jack T. Kavalieros, Benjamin Chu-Kung, Harold W. Kennel, Stephen M. Cea, Robert S. Chau
  • Publication number: 20170345900
    Abstract: Semiconductor devices including a subfin including a first III-V compound semiconductor and a channel including a second III-V compound semiconductor are described. In some embodiments the semiconductor devices include a substrate including a trench defined by at least two trench sidewalls, wherein the first III-V compound semiconductor is deposited on the substrate within the trench and the second III-V compound semiconductor is epitaxially grown on the first III-V compound semiconductor. In some embodiments, a conduction band offset between the first III-V compound semiconductor and the second III-V compound semiconductor is greater than or equal to about 0.3 electron volts. Methods of making such semiconductor devices and computing devices including such semiconductor devices are also described.
    Type: Application
    Filed: December 23, 2014
    Publication date: November 30, 2017
    Applicant: Intel Corporation
    Inventors: HAROLD W. KENNEL, MATTHEW V. METZ, WILLY RACHMADY, GILBERT DEWEY, CHANDRA S. MOHAPATRA, ANAND S. MURTHY, JACK T. KAVALIEROS, TAHIR GHANI
  • Patent number: 9818884
    Abstract: An embodiment includes a device comprising: a first epitaxial layer, coupled to a substrate, having a first lattice constant; a second epitaxial layer, on the first layer, having a second lattice constant; a third epitaxial layer, contacting an upper surface of the second layer, having a third lattice constant unequal to the second lattice constant; and an epitaxial device layer, on the third layer, including a channel region; wherein (a) the first layer is relaxed and includes defects, (b) the second layer is compressive strained and the third layer is tensile strained, and (c) the first, second, third, and device layers are all included in a trench. Other embodiments are described herein.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: November 14, 2017
    Assignee: Intel Corporation
    Inventors: Van H. Le, Benjamin Chu-Kung, Jack T. Kavalieros, Ravi Pillarisetty, Willy Rachmady, Harold W. Kennel
  • Publication number: 20170323962
    Abstract: An embodiment includes a device comprising: a trench that includes a doped trench material having: (a)(i) a first bulk lattice constant and (a)(ii) at least one of a group III-V material and a group IV material; a fin structure, directly over the trench, including fin material having: (b) (ii) a second bulk lattice constant and (b)(ii) at least one of a group III-V material and a group IV material; a barrier layer, within the trench and directly contacting a bottom surface of the fin, including a barrier layer material having a third bulk lattice constant; wherein (a) the trench has an aspect ratio (depth to width) of at least 1.5:1, and (b) the barrier layer has a height not greater than a critical thickness for the barrier layer material. Other embodiments are described herein.
    Type: Application
    Filed: December 17, 2014
    Publication date: November 9, 2017
    Inventors: GILBERT DEWEY, MATTHEW V. METZ, JACK T. KAVALIEROS, WILLY RACHMADY, TAHIR GHANI, ANAND S. MURTHY, CHANDRA S. MOHAPATRA, HAROLD W. KENNEL, GLENN A. GLASS
  • Publication number: 20170271515
    Abstract: Embodiments of the present invention provide transistor structures having strained channel regions. Strain is created through lattice mismatches in the source and drain regions relative to the channel region of the transistor. In embodiments of the invention, the transistor channel regions are comprised of germanium, silicon, a combination of germanium and silicon, or a combination of germanium, silicon, and tin and the source and drain regions are comprised of a doped III-V compound semiconductor material. Embodiments of the invention are useful in a variety of transistor structures, such as, for example, trigate, bigate, and single gate transistors and transistors having a channel region comprised of nanowires or nanoribbons.
    Type: Application
    Filed: May 31, 2017
    Publication date: September 21, 2017
    Applicant: Intel Corporation
    Inventors: Van H. Le, Harold W. Kennel, Willy Rachmady, Ravi Pillarisetty, Jack Kavalieros, Niloy Mukherjee
  • Patent number: 9698265
    Abstract: Embodiments of the present invention provide transistor structures having strained channel regions. Strain is created through lattice mismatches in the source and drain regions relative to the channel region of the transistor. In embodiments of the invention, the transistor channel regions are comprised of germanium, silicon, a combination of germanium and silicon, or a combination of germanium, silicon, and tin and the source and drain regions are comprised of a doped III-V compound semiconductor material. Embodiments of the invention are useful in a variety of transistor structures, such as, for example, trigate, bigate, and single gate transistors and transistors having a channel region comprised of nanowires or nanoribbons.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: July 4, 2017
    Assignee: Intel Corporation
    Inventors: Van H. Le, Harold W. Kennel, Willy Rachmady, Ravi Pillarisetty, Jack Kavalieros, Niloy Mukherjee
  • Publication number: 20170162653
    Abstract: Semiconductor devices having germanium active layers with underlying diffusion barrier layers are described. For example, a semiconductor device includes a gate electrode stack disposed above a substrate. A germanium active layer is disposed above the substrate, underneath the gate electrode stack. A diffusion barrier layer is disposed above the substrate, below the germanium active layer. A junction leakage suppression layer is disposed above the substrate, below the diffusion barrier layer. Source and drain regions are disposed above the junction leakage suppression layer, on either side of the gate electrode stack.
    Type: Application
    Filed: February 15, 2017
    Publication date: June 8, 2017
    Inventors: Willy RACHMADY, Van H. LE, Ravi PILLARISETTY, Jack T. KAVALIEROS, Robert S. CHAU, Harold W. KENNEL
  • Publication number: 20170125524
    Abstract: Ge and III-V channel semiconductor devices having maximized compliance and free surface relaxation and methods of fabricating such Ge and III-V channel semiconductor devices are described. For example, a semiconductor device includes a semiconductor fin disposed above a semiconductor substrate. The semiconductor fin has a central protruding or recessed segment spaced apart from a pair of protruding outer segments along a length of the semiconductor fin. A cladding layer region is disposed on the central protruding or recessed segment of the semiconductor fin. A gate stack is disposed on the cladding layer region. Source/drain regions are disposed in the pair of protruding outer segments of the semiconductor fin.
    Type: Application
    Filed: January 12, 2017
    Publication date: May 4, 2017
    Applicants: Intel Corporation, Intel Corporation
    Inventors: RAVI PILLARISETTY, SANSAPTAK DASGUPTA, NITI GOEL, VAN H. LE, MARKO RADOSAVLJEVIC, GILBERT DEWEY, NILOY MUKHERJEE, MATTHEW V. METZ, WILLY RACHMADY, JACK T. KAVALIEROS, BENJAMIN CHU-KUNG, HAROLD W. KENNEL, STEPHEN M. CEA, ROBERT S. CHAU
  • Patent number: 9608055
    Abstract: Semiconductor devices having germanium active layers with underlying diffusion barrier layers are described. For example, a semiconductor device includes a gate electrode stack disposed above a substrate. A germanium active layer is disposed above the substrate, underneath the gate electrode stack. A diffusion barrier layer is disposed above the substrate, below the germanium active layer. A junction leakage suppression layer is disposed above the substrate, below the diffusion barrier layer. Source and drain regions are disposed above the junction leakage suppression layer, on either side of the gate electrode stack.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: March 28, 2017
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Van H. Le, Ravi Pillarisetty, Jack T. Kavalieros, Robert S. Chau, Harold W. Kennel
  • Patent number: 9570614
    Abstract: Ge and III-V channel semiconductor devices having maximized compliance and free surface relaxation and methods of fabricating such Ge and III-V channel semiconductor devices are described. For example, a semiconductor device includes a semiconductor fin disposed above a semiconductor substrate. The semiconductor fin has a central protruding or recessed segment spaced apart from a pair of protruding outer segments along a length of the semiconductor fin. A cladding layer region is disposed on the central protruding or recessed segment of the semiconductor fin. A gate stack is disposed on the cladding layer region. Source/drain regions are disposed in the pair of protruding outer segments of the semiconductor fin.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: February 14, 2017
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Sansaptak Dasgupta, Niti Goel, Van H. Le, Marko Radosavljevic, Gilbert Dewey, Niloy Mukherjee, Matthew V. Metz, Willy Rachmady, Jack T. Kavalieros, Benjamin Chu-Kung, Harold W. Kennel, Stephen M. Cea, Robert S. Chau
  • Publication number: 20160372607
    Abstract: An embodiment includes a device comprising: a first epitaxial layer, coupled to a substrate, having a first lattice constant; a second epitaxial layer, on the first layer, having a second lattice constant; a third epitaxial layer, contacting an upper surface of the second layer, having a third lattice constant unequal to the second lattice constant; and an epitaxial device layer, on the third layer, including a channel region; wherein (a) the first layer is relaxed and includes defects, (b) the second layer is compressive strained and the third layer is tensile strained, and (c) the first, second, third, and device layers are all included in a trench. Other embodiments are described herein.
    Type: Application
    Filed: March 28, 2014
    Publication date: December 22, 2016
    Inventors: VAN H. LE, BENJAMIN CHU-KUNG, JACK T. KAVALIEROS, RAVI PILLARISETTY, WILLY RACHMADY, HAROLD W. KENNEL
  • Publication number: 20160351701
    Abstract: Techniques are disclosed for incorporating high mobility strained channels into fin-based NMOS transistors (e.g., FinFETs such as double-gate, trigate, etc), wherein a stress material is cladded onto the channel area of the fin. In one example embodiment, a germanium or silicon germanium film is cladded onto silicon fins in order to provide a desired tensile strain in the core of the fin, although other fin and cladding materials can be used. The techniques are compatible with typical process flows, and cladding deposition can occur at a plurality of locations within typical process flow. In various embodiments, fins may be formed with a minimum width (or later thinned) so as to improve transistor performance. In some embodiments, a thinned fin also increases tensile strain across the core of a cladded fin. In some cases, strain in the core may be further enhanced by adding an embedded silicon epitaxial source and drain.
    Type: Application
    Filed: March 27, 2014
    Publication date: December 1, 2016
    Applicant: INTEL CORPORATION
    Inventors: STEPHEN M. CEA, ROZA KOTLYAR, HAROLD W. KENNEL, GLENN A. GLASS, ANAND S. MURTHY, WILLY RACHMADY, TAHIR GHANI
  • Publication number: 20160276347
    Abstract: Techniques and methods related to dual strained cladding layers for semiconductor devices, and systems incorporating such semiconductor devices.
    Type: Application
    Filed: December 16, 2013
    Publication date: September 22, 2016
    Inventors: Stephen M. CEA, Roza KOTLYAR, Harold W. KENNEL, Kelin J. KUHN, Tahir GHANI
  • Publication number: 20160240616
    Abstract: Techniques and methods related to strained NMOS and PMOS devices without relaxed substrates, systems incorporating such semiconductor devices, and methods therefor.
    Type: Application
    Filed: December 16, 2013
    Publication date: August 18, 2016
    Inventors: Stephen M. CEA, Roza KOTLYAR, Harold W. KENNEL, Anand S. MURTHY, Glenn A. GLASS, Kelin J. KUHN, Tahir GHANI
  • Publication number: 20160233336
    Abstract: Embodiments of the present invention provide transistor structures having strained channel regions. Strain is created through lattice mismatches in the source and drain regions relative to the channel region of the transistor. In embodiments of the invention, the transistor channel regions are comprised of germanium, silicon, a combination of germanium and silicon, or a combination of germanium, silicon, and tin and the source and drain regions are comprised of a doped III-V compound semiconductor material. Embodiments of the invention are useful in a variety of transistor structures, such as, for example, trigate, bigate, and single gate transistors and transistors having a channel region comprised of nanowires or nanoribbons.
    Type: Application
    Filed: February 17, 2016
    Publication date: August 11, 2016
    Applicant: Intel Corporation
    Inventors: Van H. Le, Harold W. Kennel, Willy Rachmady, Ravi Pillarisetty, Jack Kavalieros, Niloy Mukherjee
  • Patent number: 9397166
    Abstract: Embodiments of the present invention provide transistor structures having strained channel regions. Strain is created through lattice mismatches in the source and drain regions relative to the channel region of the transistor. In embodiments of the invention, the transistor channel regions are comprised of germanium, silicon, a combination of germanium and silicon, or a combination of germanium, silicon, and tin and the source and drain regions are comprised of a doped III-V compound semiconductor material. Embodiments of the invention are useful in a variety of transistor structures, such as, for example, trigate, bigate, and single gate transistors and transistors having a channel region comprised of nanowires or nanoribbons.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: July 19, 2016
    Assignee: Intel Corporation
    Inventors: Van H. Le, Harold W. Kennel, Willy Rachmady, Ravi Pillarisetty, Jack Kavalieros, Niloy Mukherjee