Patents by Inventor Heather Debra Boek

Heather Debra Boek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160152006
    Abstract: A method of manufacturing a laminated glass article having a first clad layer, a second clad layer, and a core layer between the first clad layer and the second clad layer, by exposing an edge of the core layer. An etchant can be applied to the edge of the laminated glass article to form the recess. The recess can then be filled.
    Type: Application
    Filed: June 13, 2014
    Publication date: June 2, 2016
    Inventors: Heather Debra Boek, Thomas Michael Cleary, Michael Thomas Gallagher, Paul John Shustack, Mark Owen Weller
  • Patent number: 9340451
    Abstract: Methods for machining glass structures may be performed on fusion-drawn glass laminates having a core layer interposed between a first cladding layer and a second cladding layer. The core layer may be formed from a core glass composition having a core photosensitivity, the first cladding layer may be formed from a glass composition having a photosensitivity different from the core photosensitivity, and the second cladding layer may be formed from a glass composition having a photosensitivity different from the core photosensitivity. At least one of the core layer, the first cladding layer, and the second cladding layer is a photomachinable layer. The methods may include exposing a selected region of a photomachinable layer in the fusion-drawn laminate to ultraviolet radiation; heating the glass structure until the selected region crystallizes; and removing the crystallized material selectively from the photomachinable layer.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 17, 2016
    Assignee: Corning Incorporated
    Inventors: Heather Debra Boek, Glen Bennett Cook, Victoria Ann Edwards, Mark Owen Weller
  • Publication number: 20160102009
    Abstract: A method of fabricating a high-density array of holes in glass is provided, comprising providing a glass piece having a front surface, then irradiating the front surface of the glass piece with a UV laser beam focused to a focal point within +/?100 ?m of the front surface of the glass piece most desirably within +/?50 ?m of the front surface. The lens focusing the laser has a numerical aperture desirably in the range of from 0.1 to 0.4, more desirably in the range of from 0.1 to 0.15 for glass thickness between 0.3 mm and 0.63 mm, even more desirably in the range of from 0.12 to 0.13, so as to produce open holes extending into the glass piece 100 from the front surface 102 of the glass piece, the holes having an diameter the in range of from 5 to 15 ?m, and an aspect ratio of at least 20:1. For thinner glass, in the range of from 0.1-0.3 mm, the numerical aperture is desirably from 0.25 to 0.4, more desirably from 0.25 to 0.
    Type: Application
    Filed: December 17, 2015
    Publication date: April 14, 2016
    Inventors: Heather Debra Boek, Robert Carl Burket, Daniel Ralph Harvey, Alexander Mikhailovich Streltsov
  • Patent number: 9278886
    Abstract: A method of fabricating a high-density array of holes in glass is provided, comprising providing a glass piece having a front surface, then irradiating the front surface of the glass piece with a UV laser beam focused to a focal point within +/?100 ?m of the front surface of the glass piece most desirably within +/?50 ?m of the front surface. The lens focusing the laser has a numerical aperture desirably in the range of from 0.1 to 0.4, more desirably in the range of from 0.1 to 0.15 for glass thickness between 0.3 mm and 0.63 mm, even more desirably in the range of from 0.12 to 0.13, so as to produce open holes extending into the glass piece 100 from the front surface 102 of the glass piece, the holes having an diameter the in range of from 5 to 15 ?m, and an aspect ratio of at least 20:1. For thinner glass, in the range of from 0.1-0.3 mm, the numerical aperture is desirably from 0.25 to 0.4, more desirably from 0.25 to 0.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: March 8, 2016
    Assignee: Corning Incorporated
    Inventors: Heather Debra Boek, Robert Carl Burket, Daniel Ralph Harvey, Alexander Mikhailovich Streltsov
  • Publication number: 20150291468
    Abstract: Laminated articles comprised of glass core and clad layers, more specifically, to compressively stressed laminated articles comprising a glass core sandwiched between first and second clad layers, the clad layers being formed from photosensitive glass.
    Type: Application
    Filed: October 4, 2013
    Publication date: October 15, 2015
    Applicant: CORNING INCORPORATED
    Inventors: Heather Debra Boek, Nicholas Francis Borrelli
  • Publication number: 20150251949
    Abstract: A glass-ceramic composition is disclosed herein including: from about 60 mol. % to less than 72.0 mol. % Si02; from 0 about 10 mol. % to about 17 mol. % Al203; from about 3 mol. % to about 15 mol. % Na20; from about 1 mol. % to about 8 mol. % Li20; and from about 3 mol. % to about 7 mol. % Ti02. The glass-ceramic composition can be used to form one, two, or more, cladding layers of a laminated glass article, wherein the layer(s) of glass-ceramics material can be cerammed to form one or more glass-ceramic layers.
    Type: Application
    Filed: October 4, 2013
    Publication date: September 10, 2015
    Inventors: Heather Debra Boek, Natesan Venkataraman
  • Publication number: 20150251383
    Abstract: A method for forming a laminated glass article with a ceramic phase, such as a beta-spodumene phase, located at least at the junctures between a glass core and directly adjacent glass clad layers, and in some embodiments located throughout the laminated glass article. In some embodiments, a method is disclosed herein for forming a beta-spodumene glass-ceramic sheet, or a laminated glass article having a ceramic phase, or a laminated glass article having a beta-spodumene glass-ceramic, is disclosed.
    Type: Application
    Filed: October 4, 2013
    Publication date: September 10, 2015
    Inventors: George Halsey Beall, Heather Debra Boek, Natesan Venkataraman
  • Patent number: 9034787
    Abstract: A ceramic article may comprise a sintered phase ceramic composition comprising aluminum titanate (Al2TiO5), zirconium titanate (ZrTiO4), and a niobium-doped phase.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: May 19, 2015
    Assignee: Corning Incorporated
    Inventors: Heather Debra Boek, Matthew John Dejneka, Mark Owen Weller
  • Patent number: 8889575
    Abstract: Ion exchangeable glass articles are disclosed. In one embodiment, a glass article formed from alkali aluminosilicate glass which may include Ga2O3, Al2O3, Na2O, SiO2, B2O3, P2O5 and various combinations thereof. The glass article may generally include about X mol % of Ga2O3 and about Z mol % of Al2O3, wherein 0?X?20, 0?Z?25 and 10?(X+Z)?25. The glass article may also include from about 5 mol % to about 35 mol % Na2O, SiO2 may be present in an amount from about 40 mol % to about 70 mol % SiO2. The glass article may further include Y mol % B2O3 where Y is from 0 to about 10. The glass article may further include (10-Y) mol % of P2O5. Glass articles formed according to the present invention may be ion-exchange strengthened. In addition, the glass articles may have a low liquid CTE which enables the glass articles to be readily formed into complex shapes.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: November 18, 2014
    Assignee: Corning Incorporated
    Inventors: Heather Debra Boek, Mark Owen Weller, Randall Eugene Youngman
  • Publication number: 20140238078
    Abstract: Methods for machining glass structures may be performed on fusion-drawn glass laminates having a core layer interposed between a first cladding layer and a second cladding layer. The core layer may be formed from a core glass composition having a core photosensitivity, the first cladding layer may be formed from a glass composition having a photosensitivity different from the core photosensitivity, and the second cladding layer may be formed from a glass composition having a photosensitivity different from the core photosensitivity. At least one of the core layer, the first cladding layer, and the second cladding layer is a photomachinable layer. The methods may include exposing a selected region of a photomachinable layer in the fusion-drawn laminate to ultraviolet radiation; heating the glass structure until the selected region crystallizes; and removing the crystallized material selectively from the photomachinable layer.
    Type: Application
    Filed: March 13, 2013
    Publication date: August 28, 2014
    Applicant: Corning Incorporated
    Inventors: Heather Debra Boek, Glen Bennett Cook, Victoria Ann Edwards, Mark Owen Weller
  • Publication number: 20140243183
    Abstract: A down-drawable glass ceramic. The glass ceramic has a composition which yields a liquidus viscosity that enables formation of the parent glass by down-draw techniques such as fusion-draw and slot-draw methods. The resulting glass ceramic is white or translucent in appearance with high strength achieved through heat treatment of the fusion-formed glass.
    Type: Application
    Filed: February 20, 2014
    Publication date: August 28, 2014
    Applicant: Corning Incorporated
    Inventors: George Halsey Beall, Heather Debra Boek, Alexandre Michel Mayolet, Mark Owen Weller
  • Publication number: 20130247615
    Abstract: A method of fabricating a high-density array of holes in glass is provided, comprising providing a glass piece having a front surface, then irradiating the front surface of the glass piece with a UV laser beam focused to a focal point within +/?100 ?m of the front surface of the glass piece most desirably within +/?50 ?m of the front surface. The lens focusing the laser has a numerical aperture desirably in the range of from 0.1 to 0.4, more desirably in the range of from 0.1 to 0.15 for glass thickness between 0.3 mm and 0.63 mm, even more desirably in the range of from 0.12 to 0.13, so as to produce open holes extending into the glass piece 100 from the front surface 102 of the glass piece, the holes having an diameter the in range of from 5 to 15 ?m, and an aspect ratio of at least 20:1. For thinner glass, in the range of from 0.1-0.3 mm, the numerical aperture is desirably from 0.25 to 0.4, more desirably from 0.25 to 0.
    Type: Application
    Filed: November 30, 2011
    Publication date: September 26, 2013
    Inventors: Heather Debra Boek, Robert Carl Burket, Daniel Ralph Harvey, Alexander Mikhailovich Streltsov
  • Patent number: 8329303
    Abstract: A method is described herein for controlling the oxygen level within an oven while sintering a frit to a glass plate where the sintered frit and glass plate are subsequently sealed to another glass plate to form a sealed glass package. Examples of the sealed glass package include a light-emitting device (e.g., organic light emitting diode (OLED) device), a photovoltaic device, a food container, and a medicine container.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: December 11, 2012
    Assignee: Corning Incorporated
    Inventors: Andrew Douglas Banks, Heather Debra Boek, Jason Arthur Howles
  • Publication number: 20120308827
    Abstract: Ion exchangeable glass articles are disclosed. In one embodiment, a glass article formed from alkali aluminosilicate glass which may include Ga2O3, Al2O3, Na2O, SiO2, B2O3, P2O5 and various combinations thereof. The glass article may generally include about X mol % of Ga2O3 and about Z mol % of Al2O3, wherein 0?x?20, 0?z?25 and 10?(X+Z)?25. The glass article may also include from about 5 mol % to about 35 mol % Na2O, SiO2 may be present in an amount from about 40 mol % to about 70 mol % SiO2. The glass article may further include Y mol % B2O3 where Y is from 0 to about 10. The glass article may further include (10-Y) mol % of P2O5. Glass articles formed according to the present invention may be ion-exchange strengthened. In addition, the glass articles may have a low liquid CTE which enables the glass articles to be readily formed into complex shapes.
    Type: Application
    Filed: May 31, 2011
    Publication date: December 6, 2012
    Inventors: Heather Debra Boek, Mark Owen Weller, Randall Eugene Youngman
  • Publication number: 20120156406
    Abstract: A method is described herein for controlling the oxygen level within an oven while sintering a frit to a glass plate where the sintered frit and glass plate are subsequently sealed to another glass plate to form a sealed glass package. Examples of the sealed glass package include a light-emitting device (e.g., organic light emitting diode (OLED) device), a photovoltaic device, a food container, and a medicine container.
    Type: Application
    Filed: February 28, 2012
    Publication date: June 21, 2012
    Inventors: Andrew Douglas Banks, Heather Debra Boek, Jason Arthur Howles
  • Patent number: 8147632
    Abstract: A method is described herein for controlling the oxygen level within an oven while sintering a frit to a glass plate where the sintered frit and glass plate are subsequently sealed to another glass plate to form a sealed glass package. Examples of the sealed glass package include a light-emitting device (e.g., organic light emitting diode (OLED) device), a photovoltaic device, a food container, and a medicine container.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: April 3, 2012
    Assignee: Corning Incorporated
    Inventors: Andrew Douglas Banks, Heather Debra Boek, Jason Arthur Howles
  • Patent number: 8147976
    Abstract: A method is described herein for sintering a frit to a glass plate where the sintered frit and glass plate are subsequently sealed to another glass plate to form a sealed glass package. Examples of the sealed glass package include a light-emitting device (e.g., organic light emitting diode (OLED) device), a photovoltaic device, a food container, and a medicine container.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: April 3, 2012
    Assignee: Corning Incorporated
    Inventors: Heather Debra Boek, John W Botelho, Jason Arthur Howles
  • Publication number: 20120052302
    Abstract: A method of strengthening an edge of a glass article while maintaining the optical clarity of the major surfaces or protecting layers or structures deposited on the surfaces of the article. A protective coating or film of a polymer or polymer resin is applied to at least one surface of the glass article. The surface may either be melt-derived or polished, and/or chemically or thermally strengthened. The edge is etched with an etchant to reduce the size and number of flaws on the edge, thereby strengthening the edge. A glass article having an edge strengthened by the method is also provided.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 1, 2012
    Inventors: Joseph M. Matusick, Michael T. Preston, Robert A. Schaut, Daniel A. Sternquist, Heather Debra Boek, Mark Owen Weller
  • Publication number: 20110256407
    Abstract: A method is described herein for sintering a frit to a glass plate where the sintered frit and glass plate are subsequently sealed to another glass plate to form a sealed glass package. Examples of the sealed glass package include a light-emitting device (e.g., organic light emitting diode (OLED) device), a photovoltaic device, a food container, and a medicine container.
    Type: Application
    Filed: June 29, 2011
    Publication date: October 20, 2011
    Inventors: Heather Debra Boek, John W. Botelho, Jason Arthur Howles
  • Patent number: 7992411
    Abstract: A method is described herein for sintering a frit to a glass plate where the sintered frit and glass plate are subsequently sealed to another glass plate to form a sealed glass package. Examples of the sealed glass package include a light-emitting device (e.g., organic light emitting diode (OLED) device), a photovoltaic device, a food container, and a medicine container.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: August 9, 2011
    Assignee: Corning Incorporated
    Inventors: Heather Debra Boek, John W Botelho, Jason Arthur Howles