Patents by Inventor Hesaam Esfandyarpour

Hesaam Esfandyarpour has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10413900
    Abstract: The present disclosure provides microfluidic devices, systems and methods for sample preparation and/or analysis. A microfluidic device can include a first channel having a sequence of (n) chambers each having a first volume (v). The first channel can include one or more valves at opposing ends of the first channel that fluidically isolate the first channel. The microfluidic device can further include a second channel in fluid communication with the first channel. The second channel can include at least one second chamber having a total second volume that is at least equal to the total volume of the first channel (n*v). The second channel can include one or more valves at opposing ends of the second channel that fluidically isolate the second channel from the first channel.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: September 17, 2019
    Assignee: GENAPSYS, INC.
    Inventors: Seth Stern, Hesaam Esfandyarpour, David Eberhart
  • Publication number: 20190256903
    Abstract: The present disclosure provides methods and systems for sequencing nucleic acid molecules. Methods may include sequencing double-stranded nucleic acids or single-stranded nucleic acids. Sequencing may include the use of nucleotides coupled to electrostatic moieties. The electrostatic moieties may be detected by a sensor array. The electrostatic moieties may be reversible electrostatic moieties that are cleaved from the nucleic acid molecule after incorporation of the nucleotide. The electrostatic moieties may be irreversible electrostatic moieties. Nucleotides comprising irreversible electrostatic moieties may be incorporated into the nucleic acid molecule, detected by the sensor array, and exchanged for non-detectable nucleotides.
    Type: Application
    Filed: September 25, 2018
    Publication date: August 22, 2019
    Inventors: Hesaam Esfandyarpour, Maryam Jouzi, Seth Stern, Paul Kenney
  • Publication number: 20190241951
    Abstract: Provided herein are devices and methods suitable for sequencing, detecting, amplifying, analyzing, and performing sample preparation procedures for nucleic acids and other molecules. In some cases, the devices and methods provided herein are used for computation.
    Type: Application
    Filed: September 20, 2018
    Publication date: August 8, 2019
    Inventors: Hesaam Esfandyarpour, Meysam R. Baemi, kosar B. Parizi, Saurabh Paliwal, Amirhossein Samakar, Seth Stern
  • Publication number: 20190226019
    Abstract: The present disclosure relates to systems and methods for high efficiency electronic sequencing of nucleic acids and molecular detection.
    Type: Application
    Filed: August 20, 2018
    Publication date: July 25, 2019
    Inventor: Hesaam Esfandyarpour
  • Publication number: 20190226021
    Abstract: A method comprises magnetically holding a bead carrying biological material (e.g., nucleic acid, which may be in the form of DNA fragments or amplified DNA) in a specific location of a substrate, and applying an electric field local to the bead to isolate the biological material or products or byproducts of reactions of the biological material. For example, the bead isolated from other beads having associated biological material. The electric field in various embodiments concentrates reagents for an amplification or sequencing reaction, and/or concentrates and isolates detectable reaction by-products. For example, by isolating nucleic acids around individual beads, the electric field can allow for clonal amplification, as an alternative to emulsion PCR. In other embodiments, the electric field isolates a nanosensor proximate to the bead, to facilitate detection of at least one of local pH change, local conductivity change, local charge concentration change and local heat.
    Type: Application
    Filed: August 28, 2018
    Publication date: July 25, 2019
    Inventors: Hesaam Esfandyarpour, Mark F. Oldham, Kosar Baghbani Parizi, Eric S. Nordman
  • Patent number: 10337059
    Abstract: The present method involves sequencing by synthesis in which a template strand having an attached primer is immobilized in a small volume reaction mixture. In one embodiment, the reaction mixture is in contact with a sensitive heat sensor, which detects the heat of reaction from incorporation of a complementary base (dNTP) in the presence of appropriate reagents (DNA polymerase, and polymerase reaction buffer). Alternatively, or in addition, a change in pH resulting from the incorporation of nucleotides in the DNA polymerase reaction is measured. A device is provided having delivery channels for appropriate reagents, including dNTPs, which may be delivered sequentially or in a mixture. Preferably, the dNTPs are added in a predetermined sequence, and the dNTP is incorporated or not depending on the template sequence.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: July 2, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hesaam Esfandyarpour, Mostafa Ronaghi
  • Publication number: 20190177791
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Application
    Filed: February 22, 2019
    Publication date: June 13, 2019
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Publication number: 20190177790
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Application
    Filed: February 22, 2019
    Publication date: June 13, 2019
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T, Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Patent number: 10266892
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: April 23, 2019
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Patent number: 10260095
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: April 16, 2019
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Publication number: 20190017103
    Abstract: In one embodiment, a method is provided for the manufacture of a nano-sensor array. A base having a sensing region is provided along with a plurality of nano-sensors. Each of the plurality of nano-sensors is formed by: forming a first nanoneedle along a surface of the base, forming a dielectric on the first nanoneedle, and forming a second nanoneedle on the dielectric layer. The first nanoneedle of each sensor has a first end adjacent to the sensing region of the base. The second nanoneedle is separated from the first nanoneedle by the dielectric and has a first end adjacent the first end of the first nanoneedle. The base is provided with a fluidic channel. The plurality of nano-sensors and the fluidic channel are configured and arranged with the first ends proximate the fluidic channel to facilitate sensing of targeted matter in the fluidic channel.
    Type: Application
    Filed: July 12, 2018
    Publication date: January 17, 2019
    Inventor: Hesaam Esfandyarpour
  • Publication number: 20180335401
    Abstract: A sensing apparatus for sensing target materials including biological or chemical molecules in a fluid. One such apparatus includes a semiconductor-on-insulator (SOI) structure having an electrically-insulating layer, a fluidic channel supported by the SOI structure and configured and arranged to receive and pass a fluid including the target materials, and a semiconductor device including at least three electrically-contiguous semiconductor regions doped to exhibit a common polarity. The semiconductor regions include a sandwiched region sandwiched between two of the other semiconductor regions, and configured and arranged adjacent to the fluidic channel with a surface directed toward the fluidic channel for coupling to the target materials in the fluidic channel, and further arranged for responding to a bias voltage. The sensing apparatus also includes an amplification circuit in or on the SOI and that is arranged to facilitate sensing of the target material near the fluidic channel.
    Type: Application
    Filed: April 10, 2018
    Publication date: November 22, 2018
    Inventors: Kosar Baghbani-Parizi, Yoshio Nishi, Hesaam Esfandyarpour
  • Publication number: 20180327837
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Application
    Filed: July 18, 2018
    Publication date: November 15, 2018
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Patent number: 10125393
    Abstract: Provided herein are devices and methods suitable for sequencing, detecting, amplifying, analyzing, and performing sample preparation procedures for nucleic acids and other molecules. In some cases, the devices and methods provided herein are used for computation.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: November 13, 2018
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Meysam R. Barmi, Kosar B. Parizi, Saurabh Paliwal, Amirhossein Samakar, Seth Stern
  • Patent number: 10100356
    Abstract: A method comprises magnetically holding a bead carrying biological material (e.g., nucleic acid, which may be in the form of DNA fragments or amplified DNA) in a specific location of a substrate, and applying an electric field local to the bead to isolate the biological material or products or byproducts of reactions of the biological material. For example, the bead isolated from other beads having associated biological material. The electric field in various embodiments concentrates reagents for an amplification or sequencing reaction, and/or concentrates and isolates detectable reaction by-products. For example, by isolating nucleic acids around individual beads, the electric field can allow for clonal amplification, as an alternative to emulsion PCR. In other embodiments, the electric field isolates a nanosensor proximate to the bead, to facilitate detection of at least one of local pH change, local conductivity change, local charge concentration change and local heat.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: October 16, 2018
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Mark F. Oldham, Kosar Baghbani Parizi, Eric S. Nordman
  • Patent number: 10093975
    Abstract: The present disclosure relates to systems and methods for high efficiency electronic sequencing of nucleic acids and molecular detection. In an example embodiment of the instant disclosure, the NanoNeedle may be utilized to detect a change in impedance resulting from the modulation of the counter ion concentration or Debye length associated with a biomolecule of interest, such as DNA or protein, for an application of interest, such as DNA sequencing, DNA hybridization, or protein detection.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: October 9, 2018
    Assignee: GENAPSYS, INC.
    Inventor: Hesaam Esfandyarpour
  • Publication number: 20180282805
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Application
    Filed: June 13, 2018
    Publication date: October 4, 2018
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Publication number: 20180282806
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Application
    Filed: June 13, 2018
    Publication date: October 4, 2018
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Publication number: 20180268942
    Abstract: Methods and systems for determining whether brain tissue is indicative of a disorder, such as a neurodegenerative disorder, are provided. The methods and systems generally utilize data processing techniques to assess a level of congruence between measured parameters obtained from magnetic resonance imaging (MRI) data and simulated parameters obtained from computational modeling of brain tissues.
    Type: Application
    Filed: May 23, 2018
    Publication date: September 20, 2018
    Inventors: Padideh KAMALI-ZARE, Kaveh VEJDANI, Thomas LIEBMANN, Hesaam ESFANDYARPOUR
  • Publication number: 20180245150
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Application
    Filed: February 14, 2018
    Publication date: August 30, 2018
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee