Patents by Inventor Hideyuki Kazumi

Hideyuki Kazumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170278671
    Abstract: The scanning charged particle beam microscope according to the present application is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Application
    Filed: June 9, 2017
    Publication date: September 28, 2017
    Inventors: Toshiyuki YOKOSUKA, Chahn LEE, Hideyuki KAZUMI, Hajime KAWANO, Shahedul HOQUE, Kumiko SHIMIZU, Hiroyuki TAKAHASHI
  • Patent number: 9704687
    Abstract: The charged particle beam application device is provided with a charged particle source and an objective lens that converges charged particle beam generated by the charged particle source onto a sample. In this case, the charged particle beam application device is further provided with an aberration generating element installed between the charged particle beam source and the objective lens, a tilt-use deflector installed between the aberration generating element and the objective lens, a deflection aberration control unit for controlling the aberration generating element, a first electromagnetic field superposing multipole installed between the aberration generating element and the objective lens, and an electromagnetic field superposing multipole control unit for controlling the first electromagnetic field superposing multipole.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: July 11, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Momoyo Enyama, Akira Ikegami, Hideto Dohi, Hideyuki Kazumi, Naomasa Suzuki
  • Patent number: 9697987
    Abstract: The scanning charged particle beam microscope according to the present invention is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: July 4, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Toshiyuki Yokosuka, Chahn Lee, Hideyuki Kazumi, Hajime Kawano, Shahedul Hoque, Kumiko Shimizu, Hiroyuki Takahashi
  • Publication number: 20170186583
    Abstract: The scanning electron microscope includes: an electron source; a first deflector for deflecting a primary electron beam emitted from the electron source; a second deflector for focusing the primary electron beam deflected by the first deflector and deflecting a second electron from a sample, which is generated the focused primary electron beam, to the outside of the optical axis; a voltage applying unit for applying a negative voltage to the sample to decelerate the primary electron beam; a spectrometer for dispersing the secondary electron; a detector for detecting the secondary electron passing through the spectrometer; an electrostatic lens provided between the second deflector and the spectrometer; and a voltage control unit that controls the voltage applied to the electrostatic lens based on the negative voltage applied to the sample. The electrostatic lens allows the deflecting action to be overlapped with the converging action.
    Type: Application
    Filed: April 20, 2015
    Publication date: June 29, 2017
    Inventors: Kaori SHIRAHATA, Daisuke BIZEN, Makoto SAKAKIBARA, Yasunari SOHDA, Hajime KAWANO, Hideyuki KAZUMI
  • Patent number: 9659744
    Abstract: A charged particle beam apparatus makes it possible to acquire information in the cross-sectional direction (depth direction) of a sample having an internal structure in a nondestructive manner with reduced damage. Further, the apparatus makes it possible to analyze the depth and/or dimensions in the depth direction of the internal structure. The charged particle beam apparatus includes: a means for providing a time base for control signals; a means for applying a charged particle beam to a sample in synchronization with the time base and controlling an irradiation position; a means for analyzing the emission characteristics of an emission electron from the sample from a detection signal of the emission electron; and a means for analyzing the electrical characteristics or cross-sectional morphological characteristics of the sample based on the emission characteristics.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: May 23, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Natsuki Tsuno, Naomasa Suzuki, Hideyuki Kazumi, Shoji Hotta, Yoshinobu Kimura
  • Patent number: 9653256
    Abstract: Provided is a charged-particle-beam device capable of simultaneously cancelling out a plurality of aberrations caused by non-uniform distribution of the opening angle and energy of a charged particle beam. The charged-particle-beam device is provided with an aberration generation lens for generating an aberration due to the charged particle beam passing off-axis, and a corrective lens for causing the trajectory of the charged particle beam to converge on the main surface of an objective lens irrespective of the energy of the charged particle beam. The main surface of the corrective lens is disposed at a crossover position at which a plurality of charged particle beams having differing opening angles converge after passing through the aberration generation lens.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: May 16, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Akira Ikegami, Hideto Dohi, Hideyuki Kazumi, Yoichi Ose, Naomasa Suzuki, Momoyo Enyama, Ryuji Nishi, Akio Takaoka
  • Patent number: 9640366
    Abstract: The present invention has for its object to provide a charged particle beam irradiation method and a charged particle beam apparatus which can suppress unevenness of electrification even when a plurality of different kinds of materials are contained in a pre-dosing area or degrees of density of patterns inside the pre-dosing area differs with positions. To accomplish the above object, a charged particle beam irradiation method and a charged particle beam apparatus are provided according to which the pre-dosing area is divided into a plurality of divisional areas and electrifications are deposited to the plural divisional areas by using a beam under different beam irradiation conditions.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: May 2, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Toshiyuki Yokosuka, Minoru Yamazaki, Hideyuki Kazumi, Kazutami Tago
  • Patent number: 9627171
    Abstract: An objective of the present invention is to provide a charged particle beam device with which information based on a charged particle which is discharged from a bottom part of high-aspect structure is revealed more than with previous technology. To achieve the objective, proposed is a charged particle beam device comprising: a first orthogonal electromagnetic field generator which deflects charged particles which are discharged from a material; a second orthogonal electromagnetic field generator which further deflects the charged particles which are deflected by the first orthogonal electromagnetic field generator; an aperture forming member having a charged particle beam pass-through aperture; and a third orthogonal electromagnetic field generator which deflects the charged particles which have passed through the aperture forming member.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: April 18, 2017
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Hiroshi Makino, Hideyuki Kazumi, Minoru Yamazaki, Yuzuru Mizuhara, Miki Isawa
  • Publication number: 20170025251
    Abstract: A charged particle beam apparatus with improved depth of focus and maintained/improved resolution has a charged particle source, an off-axis illumination aperture, a lens, a computer, and a memory unit. The apparatus acquires an image by detecting a signal generated by irradiating a sample with a charged particle beam caused from the charged particle source via the off-axis illumination aperture. The computer has a beam-computing-process unit to estimate a beam profile of the charged particle beam and an image-sharpening-process unit to sharpen the image using the estimated beam profile.
    Type: Application
    Filed: July 22, 2016
    Publication date: January 26, 2017
    Inventors: Momoyo ENYAMA, Muneyuki FUKUDA, Hideyuki KAZUMI, Koichi HAMADA, Sayaka TANIMOTO
  • Patent number: 9521372
    Abstract: There is provided a technique to correctly select and measure a pattern to be measured even when contours of the pattern are close to each other in a sample including a plurality of patterns on a substantially same plane. A pattern measuring apparatus that scans a sample with charged particles, forms a detected image by detecting secondary charged particles or backscattered charged particles generated from the sample, and measures a pattern imaged on the detected image includes: an image acquiring section acquiring a plurality of detected images taken at a substantially same location on the sample under different imaging conditions; a contour extracting section extracting a plurality of pattern contours from the plurality of detected images; a contour reconstructing section reconstructing a contour to be measured by combining the plurality of pattern contours; and a contour measuring section making a measurement using the reconstructed contour to be measured.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: December 13, 2016
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yoshinori Momonoi, Koichi Hamada, Yuji Takagi, Michio Hatano, Hideyuki Kazumi
  • Patent number: 9520266
    Abstract: Pattern critical dimension measurement equipment includes an electron source configured to generate a primary electron beam, a deflector configured to deflect the primary electron beam emitted from the electron source, a focusing lens configured to focus the primary electron beam deflected by the deflector, a decelerator configured to decelerate the primary electron beam that irradiates the sample, a first detector located between the electron source and the focusing lens, the first detector being configured to detect electrons at part of azimuths of electrons generated from the sample upon irradiation of the sample with the primary electron beam, and a second detector located between the electron source and the first detector, the second detector being configured to detect electrons at substantially all azimuths of the electrons generated from the sample.
    Type: Grant
    Filed: August 9, 2014
    Date of Patent: December 13, 2016
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kaori Shirahata, Yasunari Sohda, Makoto Sakakibara, Daisuke Bizen, Hajime Kawano, Hideyuki Kazumi
  • Patent number: 9502212
    Abstract: An object of the present invention is to provide a method and an apparatus capable of measuring a potential of a sample surface by using a charged particle beam, or of detecting a compensation value of a variation in an apparatus condition which changes due to sample charging, by measuring a sample potential caused by irradiation with the charged particle beam. In order to achieve the object, a method and an apparatus are provided in which charged particle beams (2(a), 2(b)) emitted from a sample (23) are deflected by a charged particle deflector (33) in a state in which the sample (23) is irradiated with a charged particle beam (1), and information regarding a sample potential is detected by using a signal obtained at that time.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: November 22, 2016
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yuzuru Mizuhara, Miki Isawa, Minoru Yamazaki, Hitoshi Tamura, Hideyuki Kazumi
  • Patent number: 9484181
    Abstract: There is provided a charged particle beam apparatus that includes a trajectory monitoring unit which is disposed above an objective lens (14) and which includes an optical element (12) having a lens action and a trajectory correcting deflector (10). An applied voltage and an excitation current of the optical element (12) are set to zero after a trajectory correction of a primary charged particle beam (30). Accordingly, the lens action and an aberration of the optical element (12) have no influence on resolution.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: November 1, 2016
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hideto Dohi, Akira Ikegami, Hideyuki Kazumi
  • Patent number: 9472376
    Abstract: An object of the invention is to provide a scanning electron microscope which forms an electric field to lift up, highly efficiently, electrons discharged from a hole bottom or the like even if a sample surface is an electrically conductive material. To achieve the above object, according to the invention, a scanning electron microscope including a deflector which deflects a scanning position of an electron beam, and a sample stage for loading a sample thereon, is proposed. The scanning electron microscope includes a control device which controls the deflector or the sample stage in such a way that before scanning a beam on a measurement target pattern, a lower layer pattern situated in a lower layer of the measurement target pattern undergoes beam irradiation on another pattern situated in the lower layer.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: October 18, 2016
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Toshiyuki Yokosuka, Chahn Lee, Hideyuki Kazumi, Hiroshi Makino, Yuzuru Mizuhara, Miki Isawa, Michio Hatano, Yoshinori Momonoi
  • Publication number: 20160300690
    Abstract: Provided is a charged-particle-beam device capable of simultaneously cancelling out a plurality of aberrations caused by non-uniform distribution of the opening angle and energy of a charged particle beam. The charged-particle-beam device is provided with an aberration generation lens for generating an aberration due to the charged particle beam passing off-axis, and a corrective lens for causing the trajectory of the charged particle beam to converge on the main surface of an objective lens irrespective of the energy of the charged particle beam. The main surface of the corrective lens is disposed at a crossover position at which a plurality of charged particle beams having differing opening angles converge after passing through the aberration generation lens.
    Type: Application
    Filed: November 5, 2014
    Publication date: October 13, 2016
    Inventors: Akira IKEGAMI, Hideto DOHI, Hideyuki KAZUMI, Yoichi OSE, Naomasa SUZUKI, Momoyo ENYAMA, Ryuji NISHI, Akio TAKAOKA
  • Publication number: 20160240348
    Abstract: The scanning charged particle beam microscope according to the present invention is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Application
    Filed: June 11, 2014
    Publication date: August 18, 2016
    Inventors: Toshiyuki YOKOSUKA, Chahn LEE, Hideyuki KAZUMI, Hajime KAWANO, Shahedul HOQUE, Kumiko SHIMIZU, Hiroyuki TAKAHASHI
  • Publication number: 20160225583
    Abstract: An object of the present invention is to realize both of the accuracy of measuring the amount of secondary electron emissions and the stability of a charged particle beam image in a charged particle beam device. In a charged particle beam device, extraction of detected signals is started by a first trigger signal, the extraction of the detected signals is completed by a second trigger signal, the detected signals are sampled N times using N (N is a natural number) third trigger signals that equally divide an interval time T between the first trigger signal and the second trigger signal, secondary charged particles are measured by integrating and averaging the signals sampled in respective division times ?T obtained by equally dividing the interval time T, and the division time ?T is controlled in such a manner that the measured number of secondary charged particles becomes larger than the minimum number of charged particles satisfying ergodicity.
    Type: Application
    Filed: May 30, 2014
    Publication date: August 4, 2016
    Inventors: Natsuki TSUNO, Yoshinobu KIMURA, Hideyuki KAZUMI, Hajime KAWANO, Junichiro TOMIZAWA
  • Publication number: 20160217969
    Abstract: With conventional optical axis adjustment, a charged particle beam will not be perpendicularly incident to a sample, affecting the measurements of a pattern being observed. Highly precise measurement and correction of a microscopic inclination angle are difficult. Therefore, in the present invention, in a state where a charged particle beam is irradiated toward a sample, a correction of the inclination of the charged particle beam toward the sample is performed on the basis of secondary electron scanning image information from a reflector plate. From the secondary electron scanning image information, a deviation vector for charged particle beam deflectors is adjusted, causing the charged particle beam to be perpendicularly incident to the sample. At least two stages of charged particle beam deflectors are provided.
    Type: Application
    Filed: October 2, 2014
    Publication date: July 28, 2016
    Inventors: Yuzuru MIZUHARA, Hideyuki KAZUMI
  • Publication number: 20160217967
    Abstract: In a charged particle beam device including an objective lens that focuses a charged particle beam; a first deflector that deflects the charged particle beam to emit the charged particle beam to a sample from a direction different from an ideal optical axis of the objective lens; and a second deflector that deflects a charged particle emitted from the sample, a charged particle focusing lens to focus the charged particle emitted from the sample is disposed between the sample and the second deflector and strengths of the objective lens and the charged particle focusing lens are controlled, according to deflection conditions of the first deflector.
    Type: Application
    Filed: January 26, 2016
    Publication date: July 28, 2016
    Inventors: Hideto DOHI, Akira IKEGAMI, Hideyuki KAZUMI
  • Publication number: 20160148781
    Abstract: A charged particle beam apparatus makes it possible to acquire information in the cross-sectional direction (depth direction) of a sample having an internal structure in a nondestructive manner with reduced damage. Further, the apparatus makes it possible to analyze the depth and/or dimensions in the depth direction of the internal structure. The charged particle beam apparatus includes: a means for providing a time base for control signals; a means for applying a charged particle beam to a sample in synchronization with the time base and controlling an irradiation position; a means for analyzing the emission characteristics of an emission electron from the sample from a detection signal of the emission electron; and a means for analyzing the electrical characteristics or cross-sectional morphological characteristics of the sample based on the emission characteristics.
    Type: Application
    Filed: November 20, 2015
    Publication date: May 26, 2016
    Inventors: Natsuki TSUNO, Naomasa SUZUKI, Hideyuki KAZUMI, Shoji HOTTA, Yoshinobu KIMURA