Patents by Inventor Hideyuki Kojima

Hideyuki Kojima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090184351
    Abstract: A semiconductor device includes a semiconductor substrate, an active region formed in the semiconductor substrate and extending in a first direction, the active region including a transistor sub-region and a capacitor sub-region, a first trench extending around the transistor sub-region, an isolation layer disposed in the first trench, a second trench extending around the capacitor sub-region, a first transistor including a first insulating layer disposed on the transistor sub-region, the first transistor including a first conductive layer disposed on the first insulating layer, and a first capacitor including a second insulating layer extending over the capacitor sub-region and a sidewall of the second trench, the first capacitor including a second conductive layer disposed on the second insulating layer, the active region having an end portion in the first direction opposite to the transistor sub-region and extending across the first capacitor.
    Type: Application
    Filed: January 15, 2009
    Publication date: July 23, 2009
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventors: Hiroyuki OGAWA, Jun LIN, Hideyuki KOJIMA
  • Publication number: 20090174009
    Abstract: The semiconductor device includes the concentration of the impurity of the first conductivity type in a doped channel layer of a first conductivity type in the pass transistor is set at a relatively low value, and pocket regions of the first conductivity type in a pass transistor are formed so as to be relatively shallow with a relatively high impurity concentration.
    Type: Application
    Filed: January 8, 2009
    Publication date: July 9, 2009
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventors: Akihiro Usujima, Hideyuki Kojima
  • Patent number: 7557004
    Abstract: The method for fabricating the semiconductor device includes the steps of: forming an insulating film 20, a conductive film 22 and an insulating film 24 over a semiconductor substrate 10 having a first to a third region; removing an insulating film 24, the conductive film 22 and an insulating film 20 formed in the second region and the third region; forming an insulating film 38 in the second region and the third region; removing the insulating film 24 in the first region and the insulating film 38 in the third region; forming an insulating film 44 in the third region; after a conductive film 52 has been formed, patterning the conductive films 22, 52 in the first region to form a gate electrode 58; and patterning the conductive film 52 to form gate electrodes 62 in the second region and the third region while removing the conductive film 52 over the gate electrode 58.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: July 7, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Hiroyuki Ogawa, Hideyuki Kojima
  • Publication number: 20090154216
    Abstract: A semiconductor device includes a first CMOS inverter, a second CMOS inverter, a first transfer transistor and a second transfer transistor wherein the first and second transfer transistors are formed respectively in first and second device regions defined on a semiconductor device by a device isolation region so as to extend in parallel with each other, the first transfer transistor contacting with a first bit line at a first bit contact region on the first device region, the second transfer transistor contacting with a second bit line at a second bit contact region on the second device region, wherein the first bit contact region is formed in the first device region such that a center of said the bit contact region is offset toward the second device region, and wherein the second bit contact region is formed in the second device region such that a center of the second bit contact region is offset toward the first device region.
    Type: Application
    Filed: February 6, 2009
    Publication date: June 18, 2009
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventors: Toru Anezaki, Tomohiko Tsutsumi, Tatsuji Araya, Hideyuki Kojima, Taiji Ema
  • Patent number: 7548635
    Abstract: An image reading apparatus including a copy protection control apparatus including a radio frequency tag data communicating mechanism configured to receive predetermined radio frequency tag data transmitted from a radio frequency tag attached to an object material to be reproduced. A copy authorization determining mechanism determines whether reproduction of the object material is authorized based on the radio frequency tag data, and an image data reading controlling mechanism controls an image data reading mechanism and an image data outputting mechanism to perform one of a copy output process and a copy prevention process according to a result of determination performed by the copy authorization determining mechanism.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: June 16, 2009
    Assignee: Ricoh Company, Ltd.
    Inventor: Hideyuki Kojima
  • Patent number: 7539963
    Abstract: The semiconductor group comprises a first semiconductor device including a first design macro and a nonvolatile memory, and a second semiconductor device including a second design macro having identity with the first design macro and including no nonvolatile memory. The first design macro includes a first active region and a first device isolation region formed on a first semiconductor substrate. The second design macro includes a second active region and a second device isolation region formed on a second semiconductor substrate. A curvature radius of an upper end of the first active region in a cross section is larger than a curvature radius of an upper end of the second active region in a cross section. A difference in height between a surface of the first active region and a surface of the first device isolation region is larger than a difference in height between a surface of the second active region and a surface of the device isolation region.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: May 26, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Taiji Ema, Hideyuki Kojima, Toru Anezaki, Shinichi Nakagawa
  • Patent number: 7528908
    Abstract: The present invention provides a low-cost transflective liquid crystal display exhibiting high color reproducibility in a transmissive display and excellent characteristics (color reproducibility and brightness) in a reflective display. Also, the present invention provides a color filter for a bright transflective liquid crystal display. The transflective liquid crystal display includes a pair of substrates disposed opposite to each other with a liquid crystal layer held therebetween, a reflection means using ambient light as a light source, and a backlight source. The transflective liquid crystal display further includes a color filter having a transmissive region and a reflective region which are provided in each picture element of the color filter and which have colored layers comprising a single material, and a three-peak type LED backlight source.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: May 5, 2009
    Assignee: Toray Industries, Inc.
    Inventors: Tetsuo Yamashita, Ikumi Takiguchi, Hideyuki Kojima, Hiroyuki Sasaki
  • Patent number: 7521765
    Abstract: An n-type embedded layer is formed in an N-LV region of a SRAM cell region after an element isolation insulating film is formed on a p-type Si substrate. Thereafter, a p-well and an n-well are formed. In formation of a channel-doped layer, ion implantation is also performed into the N-LV region of the SRAM cell region in parallel with ion implantation into an N-LV of a logic circuit region. Ion-implantation is further performed into the N-LV region of the SRAM cell region in parallel with ion implantation into an N-MV of an I/O region.
    Type: Grant
    Filed: December 27, 2004
    Date of Patent: April 21, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Tomohiko Tsutsumi, Toru Anezaki, Hideyuki Kojima, Taiji Ema
  • Publication number: 20090098696
    Abstract: A method of manufacturing a semiconductor device includes forming a first trench in a capacitor device region of a semiconductor substrate, forming a capacitor insulation film over a sidewall surface of the first trench, forming a semiconductor film to cover the first trench, a resistor device region of the semiconductor substrate and a logic device region of the semiconductor substrate, introducing a first impurity element into the semiconductor film formed over the first trench, patterning the semiconductor film to form a top electrode in the capacitor device region, a resistor in the resistor device region and a gate electrode in the logic device region, annealing the semiconductor substrate, and introducing a second impurity element in the resistor.
    Type: Application
    Filed: May 27, 2008
    Publication date: April 16, 2009
    Applicant: FUJITSU LIMITED
    Inventors: Jun Lin, Hiroyuki Ogawa, Hideyuki Kojima
  • Patent number: 7508692
    Abstract: A semiconductor device includes a first CMOS inverter, a second CMOS inverter, a first transfer transistor and a second transfer transistor wherein the first and second transfer transistors are formed respectively in first and second device regions defined on a semiconductor device by a device isolation region so as to extend in parallel with each other, the first transfer transistor contacting with a first bit line at a first bit contact region on the first device region, the second transfer transistor contacting with a second bit line at a second bit contact region on the second device region, wherein the first bit contact region is formed in the first device region such that a center of said the bit contact region is offset toward the second device region, and wherein the second bit contact region is formed in the second device region such that a center of the second bit contact region is offset toward the first device region.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: March 24, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Toru Anezaki, Tomohiko Tsutsumi, Tatsuji Araya, Hideyuki Kojima, Taiji Ema
  • Publication number: 20080280406
    Abstract: A semiconductor device manufacturing method includes, forming isolation region having an aspect ratio of 1 or more in a semiconductor substrate, forming a gate insulating film, forming a silicon gate electrode and a silicon resistive element, forming side wall spacers on the gate electrode, heavily doping a first active region with phosphorus and a second active region and the resistive element with p-type impurities by ion implantation, forming salicide block at 500° C. or lower, depositing a metal layer covering the salicide block, and selectively forming metal silicide layers. The method may further includes, forming a thick and a thin gate insulating films, and performing implantation of ions of a first conductivity type not penetrating the thick gate insulating film and oblique implantation of ions of the opposite conductivity type penetrating also the thick gate insulating film before the formation of side wall spacers.
    Type: Application
    Filed: July 15, 2008
    Publication date: November 13, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Taiji Ema, Hideyuki Kojima, Toru Anezaki
  • Patent number: 7377379
    Abstract: In a transport belt drive control device, a first detection unit has a first resolution and indirectly detects a feed amount of a transport belt, a control unit controls drive of the transport belt based on an output of the first detection unit, and a second detection unit has a second, lower resolution and directly detects the feed amount of the transport belt. The control unit is configured to switch, when an output of the second detection unit is determined as not allowing detection of a stop position of the transport belt, the direct detection of the belt feed amount by the second detection unit to the indirect detection of the belt feed amount by the first detection unit, so that the drive of the transport belt is controlled based on the output of the first detection unit.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: May 27, 2008
    Assignee: Ricoh Company, Ltd.
    Inventor: Hideyuki Kojima
  • Publication number: 20080090364
    Abstract: Multiple kinds of transistors exhibiting desired characteristics are manufactured in fewer processes. A semiconductor device includes an isolation region reaching a first depth, first and second wells of first conductivity type, a first transistor formed in the first well and having a gate insulating film of a first thickness, and a second transistor formed in the second well and having a gate insulating film of a second thickness less than the first thickness. The first well has a first impurity concentration distribution having an extremum maximum value only at the depth equal to or greater than the first depth. The second well has a second impurity concentration distribution which is superposition of the first impurity concentration distribution, and another impurity concentration distribution which shows an extremum maximum value at a second depth less than the first depth, the superposition shows also an extremum maximum value at the second depth.
    Type: Application
    Filed: December 7, 2007
    Publication date: April 17, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Taiji Ema, Hideyuki Kojima, Toru Anezaki
  • Publication number: 20080067599
    Abstract: The semiconductor device includes a first MIS transistor including a gate insulating film 92, a gate electrode 108 formed on the gate insulating film 92 and source/drain regions 154, a second MIS transistor including a gate insulating film 96 thicker than the gate insulating film 92, a gate electrode 108 formed on the gate insulating film 96, source/drain regions 154 and a ballast resistor 120 connected to one of the source/drain regions 154, a salicide block insulating film 146 formed on the ballast resistor 120 with an insulating film 92 thinner than the gate insulating film 96 interposed therebetween, and a silicide film 156 formed on the source/drain regions 154.
    Type: Application
    Filed: November 21, 2007
    Publication date: March 20, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Tomohiko TSUTSUMI, Taiji EMA, Hideyuki KOJIMA, Toru ANEZAKI
  • Publication number: 20080054362
    Abstract: The method of manufacturing a semiconductor device, including a first region where a transistor including a gate electrode of a stacked structure is formed, a second region where a transistor including a gate electrode of a single-layer structure is formed, and a third region positioned in a boundary part between the first region and the second region, includes: depositing a first conductive film, patterning the first conductive film in the first region and the third region so that the outer edge is positioned in the third region, depositing the second conductive film, patterning the second conductive film to form a control gate in the first region while leaving the second conductive film, covering the second region and having the inner edge positioned inner of the outer edge of the first conductive film, and patterning the second conductive film in the second region to form the gate electrode.
    Type: Application
    Filed: April 20, 2007
    Publication date: March 6, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Hiroyuki Ogawa, Hideyuki Kojima, Taiji Ema
  • Patent number: 7323754
    Abstract: Multiple kinds of transistors exhibiting desired characteristics are manufactured in fewer processes. A semiconductor device includes an isolation region reaching a first depth, first and second wells of first conductivity type, a first transistor formed in the first well and having a gate insulating film of a first thickness, and a second transistor formed in the second well and having a gate insulating film of a second thickness less than the first thickness. The first well has a first impurity concentration distribution having an extremum maximum value only at the depth equal to or greater than the first depth. The second well has a second impurity concentration distribution which is superposition of the first impurity concentration distribution, and another impurity concentration distribution which shows an extremum maximum value at a second depth less than the first depth, the superposition shows also an extremum maximum value at the second depth.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: January 29, 2008
    Assignee: Fujitsu Limited
    Inventors: Taiji Ema, Hideyuki Kojima, Toru Anezaki
  • Publication number: 20070293029
    Abstract: The method for fabricating the semiconductor device includes the steps of: forming an insulating film 20, a conductive film 22 and an insulating film 24 over a semiconductor substrate 10 having a first to a third region; removing an insulating film 24, the conductive film 22 and an insulating film 20 formed in the second region and the third region; forming an insulating film 38 in the second region and the third region; removing the insulating film 24 in the first region and the insulating film 38 in the third region; forming an insulating film 44 in the third region; after a conductive film 52 has been formed, patterning the conductive films 22, 52 in the first region to form a gate electrode 58; and patterning the conductive film 52 to form gate electrodes 62 in the second region and the third region while removing the conductive film 52 over the gate electrode 58.
    Type: Application
    Filed: November 9, 2006
    Publication date: December 20, 2007
    Applicant: FUJITSU LIMITED
    Inventors: Hiroyuki Ogawa, Hideyuki Kojima
  • Publication number: 20070223271
    Abstract: A semiconductor device includes a first CMOS inverter, a second CMOS inverter, a first transfer transistor and a second transfer transistor wherein the first and second transfer transistors are formed respectively in first and second device regions defined on a semiconductor device by a device isolation region so as to extend in parallel with each other, the first transfer transistor contacting with a first bit line at a first bit contact region on the first device region, the second transfer transistor contacting with a second bit line at a second bit contact region on the second device region, wherein the first bit contact region is formed in the first device region such that a center of said the bit contact region is offset toward the second device region, and wherein the second bit contact region is formed in the second device region such that a center of the second bit contact region is offset toward the first device region.
    Type: Application
    Filed: May 25, 2007
    Publication date: September 27, 2007
    Applicant: FUJITSU LIMITED
    Inventors: Toru Anezaki, Tomohiko Tsutsumi, Tatsuji Araya, Hideyuki Kojima, Taiji Ema
  • Patent number: 7269053
    Abstract: A semiconductor device includes a first CMOS inverter, a second CMOS inverter, a first transfer transistor and a second transfer transistor wherein the first and second transfer transistors are formed respectively in first and second device regions defined on a semiconductor device by a device isolation region so as to extend in parallel with each other, the first transfer transistor contacting with a first bit line at a first bit contact region on the first device region, the second transfer transistor contacting with a second bit line at a second bit contact region on the second device region, wherein the first bit contact region is formed in the first device region such that a center of said the bit contact region is offset toward the second device region, and wherein the second bit contact region is formed in the second device region such that a center of the second bit contact region is offset toward the first device region.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: September 11, 2007
    Assignee: Fujitsu Limited
    Inventors: Toru Anezaki, Tomohiko Tsutsumi, Tatsuji Araya, Hideyuki Kojima, Taiji Ema
  • Patent number: 7221114
    Abstract: A conveyance control apparatus controls an amount of movement of a carrier. A first encoder detects an amount of movement of the carrier and outputting a first signal. A second encoder detects an amount of movement of a drive member driving the carrier. A control part acquires an amount of movement of the carrier by complementing an amount of movement of the carrier acquired from the first signal by an amount of movement of the drive member acquired from the second signal. The control part corrects a value representing a corresponding relationship between the first signal and the second signal based on the complemented amount of movement so as to control the amount of movement of the carrier using the corrected value.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: May 22, 2007
    Assignee: Ricoh Company, Ltd.
    Inventor: Hideyuki Kojima