Patents by Inventor Hiroaki Katou

Hiroaki Katou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8928069
    Abstract: The generation of a variation in properties of vertical transistors is restrained. A vertical MOS transistor is formed in a semiconductor substrate. A first interlayer dielectric film and a first source wiring are formed over the front surface of the substrate. The first source wiring is formed over the first interlayer dielectric film, and is overlapped with the vertical MOS transistor as viewed in plan. Contacts are buried in the first interlayer dielectric film. Through the contacts, an n-type source layer of vertical MOS transistor is coupled with the first source wiring. Openings are made in the first source wiring.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: January 6, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Yuki Fukui, Hiroaki Katou
  • Publication number: 20140322877
    Abstract: A trench gate type MISFET and a diode are formed in a semiconductor substrate. First and second trenches are formed in the semiconductor substrate. A gate electrode is formed in the first trench through a gate insulating film. A dummy gate electrode is formed in the second trench through a dummy gate insulating film. A cathode n+-type semiconductor region and an anode p-type semiconductor region are formed in the semiconductor substrate and the second trench is formed so as to surround the n+-type semiconductor region in a planar view. A part of the anode p-type semiconductor region is formed directly below the n+-type semiconductor region, so that a PN junction is formed between the part of the anode p-type semiconductor region and the n+-type semiconductor region. Thereby a diode is formed. The dummy gate electrode is electrically coupled to one of an anode and a cathode.
    Type: Application
    Filed: July 7, 2014
    Publication date: October 30, 2014
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Hiroaki KATOU, Taro MORIYA, Hiroyoshi KUDOU, Satoshi UCHIYA
  • Patent number: 8803226
    Abstract: A trench gate type MISFET and a diode are formed in a semiconductor substrate. First and second trenches are formed in the semiconductor substrate. A gate electrode is formed in the first trench through a gate insulating film. A dummy gate electrode is formed in the second trench through a dummy gate insulating film. A cathode n+-type semiconductor region and an anode p-type semiconductor region are formed in the semiconductor substrate and the second trench is formed so as to surround the n+-type semiconductor region in a planar view. A part of the anode p-type semiconductor region is formed directly below the n+-type semiconductor region, so that a PN junction is formed between the part of the anode p-type semiconductor region and the n+-type semiconductor region. Thereby a diode is formed. The dummy gate electrode is electrically coupled to one of an anode and a cathode.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: August 12, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroaki Katou, Taro Moriya, Hiroyoshi Kudou, Satoshi Uchiya
  • Publication number: 20140187005
    Abstract: A method for manufacturing a semiconductor device includes forming a recess over a surface of an n-type semiconductor substrate, forming a gate insulation film over an inner wall and a bottom face of the recess, embedding a gate electrode into the recess, forming a p-type base layer in the surface layer of the substrate so as to be shallower than the recess; and forming an n-type source layer in the p-type base layer so as to be shallower than the p-type base layer. The impurity profile of the p-type base layer in a thickness direction includes a second peak being located closer to a bottom face side of the substrate than the first peak and being higher than the first peak, and a third peak located between the first peak and the second peak by implanting impurity ions three times or more at ion implantation energies different from each other.
    Type: Application
    Filed: March 4, 2014
    Publication date: July 3, 2014
    Applicant: Renesas Electronics Corporation
    Inventors: Yuki FUKUI, Hiroaki Katou
  • Publication number: 20140138774
    Abstract: A semiconductor device includes a base region of a second conduction type provided over a drain region of a first conduction type, an outer peripheral well region of a second conduction type provided to cover the outer peripheral end of the base region and having an impurity concentration lower than that of the base region, a buried electrode buried in the semiconductor substrate not to overlap the outer peripheral well region, plural gate electrodes connected to the buried electrode and buried in the substrate such that each of them is adjacent to a source region, a gate interconnect provided over the substrate to overlap a portion of the outer peripheral well region in a plan view and connected to the buried electrode, and a grounding electrode provided over the substrate and connected to a portion of the outer peripheral well region not overlapping the gate interconnect in a plan view.
    Type: Application
    Filed: October 23, 2013
    Publication date: May 22, 2014
    Applicant: Renesas Electronics Corporation
    Inventors: Hiroaki KATOU, Taro MORIYA, Satoshi UCHIYA, Hiroyoshi KUDOU
  • Patent number: 8723295
    Abstract: The present invention makes it possible to inhibit an SOA (Safe Operating Area) in a vertical-type bipolar transistor from narrowing. A p-type base layer 150 includes a first peak, a second peak, and a third peak in an impurity profile in the thickness direction. The first peak is located on the topmost surface side of a semiconductor substrate 100. The second peak is located closer to the bottom face side of the semiconductor substrate 100 than the first peak and higher than the first peak. The third peak is located between the first peak and the second peak.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: May 13, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Yuki Fukui, Hiroaki Katou
  • Publication number: 20130264637
    Abstract: Trenches are formed in a base layer and extend parallel to each other. A gate insulating film is formed on the inner wall of each of multiple trenches. A gate electrode GE is buried in each of the trenches. The source layer is formed in the base layer to a depth less than the base layer. The source layer is disposed between each of the trenches. A second conduction type high concentration layer is formed between the source layer and the trench in a plan view. The trench, the source layer, and the second conduction type high concentration are arranged in this order repetitively in a plan view. One lateral side of the trench faces the source layer and the other lateral side of the trench faces the second conduction type high concentration layer.
    Type: Application
    Filed: March 27, 2013
    Publication date: October 10, 2013
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Hiroaki KATOU, Hiroyoshi KUDOU, Taro MORIYA, Satoshi UCHIYA
  • Publication number: 20130256783
    Abstract: A trench gate type MISFET and a diode are formed in a semiconductor substrate. First and second trenches are formed in the semiconductor substrate. A gate electrode is formed in the first trench through a gate insulating film. A dummy gate electrode is formed in the second trench through a dummy gate insulating film. A cathode n+-type semiconductor region and an anode p-type semiconductor region are formed in the semiconductor substrate and the second trench is formed so as to surround the n+-type semiconductor region in a planar view. A part of the anode p-type semiconductor region is formed directly below the n+-type semiconductor region, so that a PN junction is formed between the part of the anode p-type semiconductor region and the n+-type semiconductor region. Thereby a diode is formed. The dummy gate electrode is electrically coupled to one of an anode and a cathode.
    Type: Application
    Filed: February 13, 2013
    Publication date: October 3, 2013
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Hiroaki KATOU, Taro MORIYA, Hiroyoshi KUDOU, Satoshi UCHIYA
  • Publication number: 20120313163
    Abstract: The generation of a variation in properties of vertical transistors is restrained. A vertical MOS transistor is formed in a semiconductor substrate. A first interlayer dielectric film and a first source wiring are formed over the front surface of the substrate. The first source wiring is formed over the first interlayer dielectric film, and is overlapped with the vertical MOS transistor as viewed in plan. Contacts are buried in the first interlayer dielectric film. Through the contacts, an n-type source layer of vertical MOS transistor is coupled with the first source wiring. Openings are made in the first source wiring.
    Type: Application
    Filed: May 14, 2012
    Publication date: December 13, 2012
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Yuki FUKUI, Hiroaki KATOU
  • Publication number: 20120307508
    Abstract: The present invention makes it possible to inhibit an SOA (Safe Operating Area) in a vertical-type bipolar transistor from narrowing. A p-type base layer 150 includes a first peak, a second peak, and a third peak in an impurity profile in the thickness direction. The first peak is located on the topmost surface side of a semiconductor substrate 100. The second peak is located closer to the bottom face side of the semiconductor substrate 100 than the first peak and higher than the first peak. The third peak is located between the first peak and the second peak.
    Type: Application
    Filed: June 4, 2012
    Publication date: December 6, 2012
    Applicant: Renesas Electronics Corporation
    Inventors: Yuki FUKUI, Hiroaki Katou
  • Patent number: 7981754
    Abstract: To provide a manufacturing method of a semiconductor substrate and a manufacturing method of a semiconductor device, which prevent reduction in breakdown voltage of a gate oxide film of a device formed in a semiconductor substrate to improve a reliability of the gate oxide film. A manufacturing method of a semiconductor substrate according to the present invention includes: exposing a silicon surface of an active layer substrate 1 made of single-crystal silicon, to which a semiconductor device is formed; forming an oxide film on a support substrate 2 made of single-crystal silicon; and bonding the silicon surface of the active layer substrate 1 to the oxide film formed on the support substrate 2. The silicon surface of the active layer substrate 1 is exposed by removing a spontaneous oxidation film 7 formed on the surface.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: July 19, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroaki Katou
  • Publication number: 20100055870
    Abstract: To provide a manufacturing method of a semiconductor substrate and a manufacturing method of a semiconductor device, which prevent reduction in breakdown voltage of a gate oxide film of a device formed in a semiconductor substrate to improve a reliability of the gate oxide film. A manufacturing method of a semiconductor substrate according to the present invention includes: exposing a silicon surface of an active layer substrate 1 made of single-crystal silicon, to which a semiconductor device is formed; forming an oxide film on a support substrate 2 made of single-crystal silicon; and bonding the silicon surface of the active layer substrate 1 to the oxide film formed on the support substrate 2. The silicon surface of the active layer substrate 1 is exposed by removing a spontaneous oxidation film 7 formed on the surface.
    Type: Application
    Filed: August 13, 2007
    Publication date: March 4, 2010
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Hiroaki Katou
  • Patent number: 7622362
    Abstract: According to the present invention, there is provided a method for manufacturing a semiconductor device that includes preparing a first semiconductor substrate and a second semiconductor substrate, forming a first insulating film on a surface of the first semiconductor substrate, forming circuit elements on a first surface of the second semiconductor substrate, grinding a second surface of the second semiconductor substrate, forming a second insulating film on the second surface of the second semiconductor substrate, and bonding the first insulating film and the second insulating film.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: November 24, 2009
    Assignee: NEC Electronics Corporation
    Inventor: Hiroaki Katou
  • Patent number: 7569467
    Abstract: A semiconductor device has a multi-layer wiring in which resistance against migration of the semiconductor device is raised to improve the yield. Semiconductor device 100 includes a first interconnect (wiring) 112, formed in a first interlayer insulating film 106 on a semiconductor substrate, not shown, a via 128 provided on the first interconnect (wiring) 112 so that the via is connected to the first interconnect (wiring) 112, and a different element containing electrically conductive film 114. The different element containing electrically conductive film is formed selectively on a site on the top of the first interconnect (wiring) 112 where the first wiring is contacted with the bottom of the via 128. The different element containing electrically conductive film contains a metal of a main component of the first interconnect (wiring) 112 and a different element different from the metal of the main component.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: August 4, 2009
    Assignee: NEC Electronics Corporation
    Inventor: Hiroaki Katou
  • Publication number: 20080113490
    Abstract: According to the present invention, there is provided a method for manufacturing a semiconductor device that includes preparing a first semiconductor substrate and a second semiconductor substrate, forming a first insulating film on a surface of the first semiconductor substrate, forming circuit elements on a first surface of the second semiconductor substrate, grinding a second surface of the second semiconductor substrate, forming a second insulating film on the second surface of the second semiconductor substrate, and bonding the first insulating film and the second insulating film.
    Type: Application
    Filed: November 9, 2007
    Publication date: May 15, 2008
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Hiroaki KATOU
  • Publication number: 20070082488
    Abstract: A semiconductor device has a multi-layer wiring in which resistance against migration of the semiconductor device is raised to improve the yield. Semiconductor device 100 includes a first interconnect (wiring) 112, formed in a first interlayer insulating film 106 on a semiconductor substrate, not shown, a via 128 provided on the first interconnect (wiring) 112 so that the via is connected to the first interconnect (wiring) 112, and a different element containing electrically conductive film 114. The different element containing electrically conductive film is formed selectively on a site on the top of the first interconnect (wiring) 112 where the first wiring is contacted with the bottom of the via 128. The different element containing electrically conductive film contains a metal of a main component of the first interconnect (wiring) 112 and a different element different from the metal of the main component.
    Type: Application
    Filed: October 6, 2006
    Publication date: April 12, 2007
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Hiroaki Katou