Patents by Inventor Hiroshi Takada

Hiroshi Takada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9562794
    Abstract: An encoder includes a plurality of slit tracks, a point light source, a first light-receiving array, a second light-receiving array, and a third light-receiving array. The plurality of slit tracks respectively comprises a plurality of reflection slits arranged along a measurement direction. The point light source is configured to emit diffusion light to the plurality of slit tracks. The first light-receiving array is configured to receive light reflected by the slit track comprising an incremental pattern. The second light-receiving array is configured to receive light reflected by the slit track comprising an incremental pattern longer in pitch than other incremental patterns. The third light-receiving array is configured to receive light reflected by the slit track comprising an absolute pattern.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: February 7, 2017
    Assignee: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Yasushi Yoshida, Yasuhiro Matsutani, Shiro Yoshidomi, Hiroshi Takada, Yuji Arinaga, Ikuma Murokita, Masanobu Harada, Hiroki Kondo
  • Patent number: 9436166
    Abstract: An encoder includes a plurality of slit tracks, a point light source, a first to third light-receiving arrays. The plurality of slit tracks respectively comprises a plurality of reflection slits. The point light source emits diffusion light to the plurality of slit tracks. The first light-receiving array receives light reflected by the slit track comprising an incremental pattern. The second light-receiving array receives light reflected by the slit track comprising an incremental pattern longer in pitch than other incremental patterns, and is disposed at a position on a side of a direction where the point light source is disposed, than the first light-receiving array, The third light-receiving array receives light reflected by the slit track comprising an absolute pattern, and is disposed at a position on a side of a direction where the point light source is disposed, than the first light-receiving array.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: September 6, 2016
    Assignee: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Yasushi Yoshida, Yasuhiro Matsutani, Shiro Yoshidomi, Hiroshi Takada, Yuji Arinaga, Ikuma Murokita, Masanobu Harada, Hiroki Kondo
  • Patent number: 9423279
    Abstract: An optical module includes: a light source configured to emit diffusion light to tracks; one light receiving array and another light receiving array which are arranged across the light source in a width direction substantially vertical to the measurement direction; a light receiving array arranged between the one light receiving array and the light source, and configured to receive light which is reflected at the tracks having a first incremental pattern; and a light receiving array arranged between the another first light receiving array and the light source, and configured to receive light which is reflected at the tracks having a second incremental pattern which pitch is longer than a pitch of the first incremental pattern.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: August 23, 2016
    Assignee: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Yasushi Yoshida, Yasuhiro Matsutani, Shiro Yoshidomi, Hiroshi Takada, Yuji Arinaga, Ikuma Murokita, Masanobu Harada, Hiroki Kondo
  • Publication number: 20160161295
    Abstract: An encoder includes an object body having an absolute pattern formed along a measurement direction, a light source positioned such that the light source emits light to the absolute pattern of the object body, and light receiving elements aligned along the measurement direction such that the light receiving elements receive the light transmitted through or reflected by the absolute pattern of the object body. The light receiving elements include a first light receiving element having a polygonal shape and having a first region in the polygonal shape and a second region formed on an inner side of the first region such that the second region has an optical sensitivity lower than an optical sensitivity of the first region and that the first region includes corner portions of the polygonal shape.
    Type: Application
    Filed: December 7, 2015
    Publication date: June 9, 2016
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Koji UEMURA, Yuji ARINAGA, Shiro YOSHIDOMI, lkuma MUROKITA, Hiroshi TAKADA, Jiro MURAOKA
  • Publication number: 20160164383
    Abstract: An encoder includes an absolute pattern, a light source, and a plurality of light reception elements. The absolute pattern is disposed in a measurement direction. The light source is configured to emit light to the absolute pattern. The plurality of light reception elements are arranged in the measurement direction and configured to receive the light emitted from the light source and transmitted through or reflected by the absolute pattern. The plurality of light reception elements include at least one first light reception element having an edge in the measurement direction. The edge is inclined relative to a width direction perpendicular to the measurement direction.
    Type: Application
    Filed: November 24, 2015
    Publication date: June 9, 2016
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Hiroshi TAKADA, Yuji ARINAGA, Shiro YOSHIDOMI, Ikuma MUROKITA, Koji UEMURA, Jiro MURAOKA
  • Patent number: 9335185
    Abstract: The encoder includes a plurality of slit tracks, a point light source, two first light-receiving arrays, two second light-receiving arrays, and a third light-receiving array. The plurality of slit tracks respectively comprises a plurality of reflection slits arranged along a measurement direction. The point light source is configured to emit diffusion light to the plurality of slit tracks. The two first light-receiving arrays are disposed sandwiching the point light source in a width direction substantially orthogonal to the measurement direction. The two second light-receiving arrays are disposed sandwiching the point light source in the measurement direction. The third light-receiving array is configured to receive light reflected by the slit track comprising an incremental pattern that differs in pitch from other incremental patterns, and is disposed at a position in a direction where the first light-receiving array is disposed than the point light source.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: May 10, 2016
    Assignee: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Yasushi Yoshida, Yasuhiro Matsutani, Shiro Yoshidomi, Hiroshi Takada, Yuji Arinaga, Ikuma Murokita, Masanobu Harada, Hiroki Kondo
  • Publication number: 20160003646
    Abstract: This disclosure discloses an encoder. The disk is fixed to a rotating body. The one or more first slits are arranged on the disk in a part in a circumferential direction around a rotation center of the disk. The light source is configured to emit light to a region that encompasses at least a rotational locus of the first slit by rotation of the disk. The plurality of first light receiving elements is arranged extending along a circumferential direction around the rotational axis and is configured to receive light that is reflected by or transmits through the first slit.
    Type: Application
    Filed: September 10, 2015
    Publication date: January 7, 2016
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Yasushi YOSHIDA, Hiroshi TAKADA
  • Publication number: 20150129847
    Abstract: A method for producing a conductive substrate including at least an anchor layer and a pattern of conductive thin metal lines on a bare substrate is provided. The method includes the steps of: forming a porous anchor layer mainly composed of an inorganic compound on the bare substrate; forming the pattern of thin metal lines containing metal nanoparticles and a metal complex on the anchor layer; and performing thermal annealing of the pattern of thin metal lines by irradiation of flash light.
    Type: Application
    Filed: May 16, 2013
    Publication date: May 14, 2015
    Inventors: Hiroshi Takada, Toshiyuki Matsumura, Masaki Goto
  • Publication number: 20150123585
    Abstract: An optical module includes: a light source configured to emit diffusion light to tracks; one light receiving array and another light receiving array which are arranged across the light source in a width direction substantially vertical to the measurement direction; a light receiving array arranged between the one light receiving array and the light source, and configured to receive light which is reflected at the tracks having a first incremental pattern; and a light receiving array arranged between the another first light receiving array and the light source, and configured to receive light which is reflected at the tracks having a second incremental pattern which pitch is longer than a pitch of the first incremental pattern.
    Type: Application
    Filed: October 29, 2014
    Publication date: May 7, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Yasushi YOSHIDA, Yasuhiro MATSUTANI, Shiro YOSHIDOMI, Hiroshi TAKADA, Yuji ARINAGA, Ikuma MUROKITA, Masanobu HARADA, Hiroki KONDO
  • Publication number: 20150122982
    Abstract: An encoder includes a track having optical effecters arranged to have an absolute pattern in a measurement direction, a light source configured to emit diffusion light to the track, and a light receiving array configured to have light receiving elements arranged in the measurement direction and to receive light reflected or transmitted by the track. The light receiving elements fall within an area which is positioned corresponding to an area between the optical effecters and to which the light reflected by the track dose not reach.
    Type: Application
    Filed: October 29, 2014
    Publication date: May 7, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Yasushi YOSHIDA, Yasuhiro MATSUTANI, Shiro YOSHIDOMI, Hiroshi TAKADA, Yuji ARINAGA, Ikuma MUROKITA, Masanobu HARADA, Hiroki KONDO
  • Publication number: 20150123587
    Abstract: An encoder includes a plurality of slit tracks, a point light source, a first light-receiving array, and a second light-receiving array. The plurality of slit tracks respectively comprises a plurality of reflection slits arranged along a measurement direction. The point light source is configured to emit diffusion light to the plurality of slit tracks. The first light-receiving array is configured to receive light reflected by the slit track comprising an incremental pattern, and is disposed at a position in a first direction than the point light source. The second light-receiving array is configured to receive light reflected by the slit track comprising an incremental pattern that differs in pitch from the slit track corresponding to the first light-receiving array, and is disposed at a position in a second direction than the point light source. The second direction forms an angle ? with respect to the first direction.
    Type: Application
    Filed: November 4, 2014
    Publication date: May 7, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Yasushi YOSHIDA, Yasuhiro MATSUTANI, Shiro YOSHIDOMI, Hiroshi TAKADA, Yuji ARINAGA, Ikuma MUROKITA, Masanobu HARADA, Hiroki KONDO
  • Publication number: 20150123588
    Abstract: An encoder includes a plurality of slit tracks, a point light source, a first to third light-receiving arrays. The plurality of slit tracks respectively comprises a plurality of reflection slits. The point light source emits diffusion light to the plurality of slit tracks. The first light-receiving array receives light reflected by the slit track comprising an incremental pattern. The second light-receiving array receives light reflected by the slit track comprising an incremental pattern longer in pitch than other incremental patterns, and is disposed at a position on a side of a direction where the point light source is disposed, than the first light-receiving array, The third light-receiving array receives light reflected by the slit track comprising an absolute pattern, and is disposed at a position on a side of a direction where the point light source is disposed, than the first light-receiving array.
    Type: Application
    Filed: November 4, 2014
    Publication date: May 7, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Yasushi YOSHIDA, Yasuhiro MATSUTANI, Shiro YOSHIDOMI, Hiroshi TAKADA, Yuji ARINAGA, Ikuma MUROKITA, Masanobu HARADA, Hiroki KONDO
  • Publication number: 20150122980
    Abstract: An encoder includes a plurality of slit tracks, a point light source, a first light-receiving array, a second light-receiving array, and a third light-receiving array. The plurality of slit tracks respectively comprises a plurality of reflection slits arranged along a measurement direction. The point light source is configured to emit diffusion light to the plurality of slit tracks. The first light-receiving array is configured to receive light reflected by the slit track comprising an incremental pattern. The second light-receiving array is configured to receive light reflected by the slit track comprising an incremental pattern longer in pitch than other incremental patterns. The third light-receiving array is configured to receive light reflected by the slit track comprising an absolute pattern.
    Type: Application
    Filed: November 4, 2014
    Publication date: May 7, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Yasushi YOSHIDA, Yasuhiro MATSUTANI, Shiro YOSHIDOMI, Hiroshi TAKADA, Yuji ARINAGA, Ikuma MUROKITA, Masanobu HARADA, Hiroki KONDO
  • Publication number: 20150123586
    Abstract: The encoder includes a plurality of slit tracks, a point light source, two first light-receiving arrays, two second light-receiving arrays, and a third light-receiving array. The plurality of slit tracks respectively comprises a plurality of reflection slits arranged along a measurement direction. The point light source is configured to emit diffusion light to the plurality of slit tracks. The two first light-receiving arrays are disposed sandwiching the point light source in a width direction substantially orthogonal to the measurement direction. The two second light-receiving arrays are disposed sandwiching the point light source in the measurement direction. The third light-receiving array is configured to receive light reflected by the slit track comprising an incremental pattern that differs in pitch from other incremental patterns, and is disposed at a position in a direction where the first light-receiving array is disposed than the point light source.
    Type: Application
    Filed: November 4, 2014
    Publication date: May 7, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Yasushi YOSHIDA, Yasuhiro MATSUTANI, Shiro YOSHIDOMI, Hiroshi TAKADA, Yuji ARINAGA, Ikuma MUROKITA, Masanobu HARADA, Hiroki KONDO
  • Publication number: 20140234544
    Abstract: A surface treatment agent for aluminum heat exchangers, which includes a zirconium element, vanadium element, fluorine element, aluminum element and an acrylic polymer, with the concentration of zirconium element in terms of zirconium being 100-100,000 ppm by mass, the concentration of vanadium element in terms of vanadium being 50-100,000 ppm by mass, the fluorine element concentration being 125-125,000 ppm by mass, the concentration of aluminum element in terms of aluminum being 5-10,000 ppm by mass and the concentration of the acrylic polymer being 100-100,000 ppm by mass. The surface treatment agent has a pH of 0.5-3, and suppresses odor generated from an aluminum heat exchanger, and the generation of white rust that deposits on the surface of an aluminum fin.
    Type: Application
    Filed: September 20, 2012
    Publication date: August 21, 2014
    Applicant: Noppon Paint Co., Ltd.
    Inventors: Hiroshi Takada, Hidekimi Hirasawa, Kenji Tsuge
  • Publication number: 20140166179
    Abstract: A pneumatic tire with short fibers fixed to the inner surface of the tire with improved peel resistance, and a method of producing such a pneumatic tire. The pneumatic tire has a carcass toroidally extending from a tread portion along a pair of sidewall portions to a pair of bead portions, and bead fillers provided radially outwardly of bead cores embedded in the bead portions, including flocking areas in which many short fibers are fixed to at least part of an inner surface of the pneumatic tire with an adhesive. The flocking areas are positioned such that their tire radial direction inner ends are positioned inwardly in the tire radial direction as compared to the tire radial direction outer ends of the bead fillers and are spaced a given distance outward in the tire radial direction apart from bead toes.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 19, 2014
    Applicant: BRIDGESTONE CORPORATION
    Inventors: Toshiyuki WATANABE, Yoshiyuki WAKI, Taiga ISHIHARA, Hidetoshi YOKOTA, Seiji ISHIKAWA, Ietomo MATSUNAGA, Akio KUSANO, Hiroshi TAKADA, Akane MIYOSHI
  • Publication number: 20140076490
    Abstract: Disclosed is a transparent electrode containing a transparent support having thereon: a conductive layer A having a conductive fiber; and a conductive layer B having a conductive polymer, wherein the conductive layer A and the conductive layer B are disposed adjacent each other and the conductive layer A is located nearer to the transparent support than the conductive layer B; and a first surface of the conductive layer B contacting with the conductive layer A has a smoothness Ra(B): Ra(B)?30 nm.
    Type: Application
    Filed: November 25, 2013
    Publication date: March 20, 2014
    Applicant: Konica Minolta Holdings, Inc.
    Inventor: Hiroshi TAKADA
  • Patent number: 8584203
    Abstract: There is provided an identifier authenticating system in which information requesting users can share all predetermined information held in a plurality of information providing servers. In the identifier authenticating system, when an identifier holding user 18 presents an identifier to an information requesting server 16, the information requesting server 16 asks a location managing server 14 about a location of an information providing server 15; the location managing server 14 returns a confirmed IP address of the information providing server 15 to the information requesting server 16 based on the location information; and the information requesting server 16 uses the confirmed IP address to access the information providing server 15 corresponding to the confirmed IP address and receives predetermined information specified by multiplying n pieces of identification information from the accessed information providing server.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: November 12, 2013
    Assignees: Japan Registry Services, Co., Ltd.
    Inventors: Takaharu Ui, Toshihide Uotani, Shin Yoshimura, Hiroshi Takada
  • Patent number: 8539549
    Abstract: There is provided an identifier authentication system in which information requesting users can share all predetermined information held in a plurality of information providing servers. In the identifier authentication system, when an identifier holding user 19 presents an identifier to an information requesting server 15, the information requesting server 15 asks a location management server 13 about a location of an information providing server 14 corresponding to the presented identifier, the location management server 13 returns the confirmed IP address of the information providing server 15 corresponding to the presented identifier to the information requesting server 15 based on the location information, the information requesting server 15 accesses the information providing server 14 corresponding to the confirmed IP address by using the confirmed IP address, and receives predetermined information corresponding to the presented identifier from the accessed information providing server 14.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: September 17, 2013
    Assignees: Japan Registry Services, Co., Ltd.
    Inventors: Takaharu Ui, Toshihide Uotani, Shin Yoshimura, Hiroshi Takada
  • Patent number: 8518562
    Abstract: A magnetic storage device stable in write characteristic is provided. A first nonmagnetic film is provided over a recording layer. A first ferromagnetic film is provided over the first nonmagnetic film and has a first magnetization and a first film thickness. A second nonmagnetic film is provided over the first ferromagnetic film. A second ferromagnetic film is provided over the second nonmagnetic film, is coupled in antiparallel with the first ferromagnetic film, and has a second magnetization and a second film thickness. An antiferromagnetic film is provided over the second ferromagnetic film. The sum of the product of the first magnetization and the first film thickness and the product of the second magnetization and the second film thickness is smaller than the product of the magnetization of the recording layer and the film thickness of the recording layer.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: August 27, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Takashi Takenaga, Takeharu Kuroiwa, Hiroshi Takada, Ryoji Matsuda, Yosuke Takeuchi