Patents by Inventor Hiroyuki Matsunami

Hiroyuki Matsunami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120212194
    Abstract: A reference voltage circuit includes a first amplifier, a first load device and a first PN junction device, second and third load devices and a second PN junction device, an offset voltage reduction circuit, a coupling node potential takeout circuit, and an area adjustment circuit. The offset voltage reduction circuit is configured to reduce an offset voltage between the first and second input terminals at the first amplifier, and the coupling node potential takeout circuit is configured to take out potentials of the first and second coupling nodes. The area adjustment circuit is configured to adjust an area of the second PN junction device in accordance with the potentials of the first and second coupling nodes which are taken out by the coupling node potential takeout circuit.
    Type: Application
    Filed: December 11, 2011
    Publication date: August 23, 2012
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Suguru TACHIBANA, Hiroyuki Matsunami, Yukinobu Tanida
  • Patent number: 7834673
    Abstract: A variable delay circuit comprising a first delay element configured to delay an input signal, a second delay element coupled to the first delay element in parallel and also configured to delay the input signal, a control current supply section configured to supply control currents for adjusting a delay amount of the first delay element and a delay amount of the second delay element, and an output signal selecting section configured to select any one of an output signal from the first delay element and an output signal from the second delay element according to a selecting signal for selecting delay time of the input signal.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: November 16, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Hiroyuki Matsunami
  • Patent number: 7671387
    Abstract: A lateral junction field effect transistor includes a first gate electrode layer arranged in a third semiconductor layer between source/drain region layers, having a lower surface extending on the second semiconductor layer, and doped with p-type impurities more heavily than the second semiconductor layer, and a second gate electrode layer arranged in a fifth semiconductor layer between the source/drain region layers, having a lower surface extending on a fourth semiconductor layer, having substantially the same concentration of p-type impurities as the first gate electrode layer, and having the same potential as the first gate electrode layer. Thereby, the lateral junction field effect transistor has a structure, which can reduce an on-resistance while maintaining good breakdown voltage properties.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: March 2, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kazuhiro Fujikawa, Shin Harada, Kenichi Hirotsu, Satoshi Hatsukawa, Takashi Hoshino, Hiroyuki Matsunami, Tsunenobu Kimoto
  • Patent number: 7671388
    Abstract: A lateral junction field effect transistor includes a first gate electrode layer arranged in a third semiconductor layer between source/drain region layers, having a lower surface extending on the second semiconductor layer, and doped with p-type impurities more heavily than the second semiconductor layer, and a second gate electrode layer arranged in a fifth semiconductor layer between the source/drain region layers, having a lower surface extending on a fourth semiconductor layer, having substantially the same concentration of p-type impurities as the first gate electrode layer, and having the same potential as the first gate electrode layer. Thereby, the lateral junction field effect transistor has a structure, which can reduce an on-resistance while maintaining good breakdown voltage properties.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: March 2, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kazuhiro Fujikawa, Shin Harada, Kenichi Hirotsu, Satoshi Hatsukawa, Takashi Hoshino, Hiroyuki Matsunami, Tsunenobu Kimoto
  • Publication number: 20090315082
    Abstract: A lateral junction field effect transistor includes a first gate electrode layer arranged in a third semiconductor layer between source/drain region layers, having a lower surface extending on the second semiconductor layer, and doped with p-type impurities more heavily than the second semiconductor layer, and a second gate electrode layer arranged in a fifth semiconductor layer between the source/drain region layers, having a lower surface extending on a fourth semiconductor layer, having substantially the same concentration of p-type impurities as the first gate electrode layer, and having the same potential as the first gate electrode layer. Thereby, the lateral junction field effect transistor has a structure, which can reduce an on-resistance while maintaining good breakdown voltage properties.
    Type: Application
    Filed: September 1, 2009
    Publication date: December 24, 2009
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Kazuhiro Fujikawa, Shin Harada, Kenichi Hirotsu, Satoshi Hatsukawa, Takashi Hoshino, Hiroyuki Matsunami, Tsunenobu Kimoto
  • Patent number: 7625447
    Abstract: SiC is a very stable substance, and it is difficult to control the condition of a SiC surface to be suitable for crystal growth in conventional Group III nitride crystal growing apparatuses. This problem is solved as follows. The surface of a SiC substrate 1 is rendered into a step-terrace structure by performing a heating process in an atmosphere of HCl gas. The surface of the SiC substrate 1 is then treated sequentially with aqua regia, hydrochloric acid, and hydrofluoric acid. A small amount of silicon oxide film formed on the surface of the SiC substrate 1 is etched so as to form a clean SiC surface 3 on the substrate surface. The SiC substrate 1 is then installed in a high-vacuum apparatus and the pressure inside is maintained at ultrahigh vacuum (such as 10?6 to 10?8 Pa). In the ultrahigh vacuum state, a process of irradiating the surface with a Ga atomic beam 5 at time t1 at temperature of 800° C. or lower and performing a heating treatment at 800° C. or higher is repeated at least once.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: December 1, 2009
    Assignee: Japan Science and Technology Agency
    Inventors: Jun Suda, Hiroyuki Matsunami, Norio Onojima
  • Patent number: 7622763
    Abstract: A field effect transistor comprises a SiC substrate 1, a source 3a and a drain 3b formed on the surface of the SiC substrate 1, an insulating structure comprising an AlN layer 5 formed in contact with the SiC surface and having a thickness of one molecule-layer or greater, and a SiO2 layer formed thereon, and a gate electrode 15 formed on the insulation structure. Leakage current can be controlled while the state of interface with SiC is maintained in a good condition.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: November 24, 2009
    Assignee: Japan Science and Technology Agency
    Inventors: Jun Suda, Hiroyuki Matsunami
  • Publication number: 20090261362
    Abstract: 4H—InGaAlN alloy based optoelectronic and electronic devices on non-polar face are formed on 4H—AlN or 4H—AlGaN on (11-20) a-face 4H—SiC substrates. Typically, non polar 4H—AlN is grown on 4H—SiC (11-20) by molecular beam epitaxy (MBE). Subsequently, III-V nitride device layers are grown by metal organic chemical vapor deposition (MOCVD) with 4H-polytype for all of the layers. The non-polar device does not contain any built-in electric field due to the spontaneous and piezoelectric polarization. The optoelectronic devices on the non-polar face exhibits higher emission efficiency with shorter emission wavelength because the electrons and holes are not spatially separated in the quantum well. Vertical device configuration for lasers and light emitting diodes (LEDs) using conductive 4H—AlGaN interlayer on conductive 4H—SiC substrates makes the chip size and series resistance smaller. The elimination of such electric field also improves the performance of high speed and high power transistors.
    Type: Application
    Filed: July 1, 2009
    Publication date: October 22, 2009
    Applicant: PANASONIC CORPORATION
    Inventors: Tetsuzo UEDA, Tsunenobu Kimoto, Hiroyuki Matsunami, Jun Suda, Norio Onojima
  • Publication number: 20090160520
    Abstract: A variable delay circuit comprising a first delay element configured to delay an input signal, a second delay element coupled to the first delay element in parallel and also configured to delay the input signal, a control current supply section configured to supply control currents for adjusting a delay amount of the first delay element and a delay amount of the second delay element, and an output signal selecting section configured to select any one of an output signal from the first delay element and an output signal from the second delay element according to a selecting signal for selecting delay time of the input signal.
    Type: Application
    Filed: December 23, 2008
    Publication date: June 25, 2009
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventor: Hiroyuki MATSUNAMI
  • Patent number: 7528426
    Abstract: A lateral JFET has a basic structure including an n-type semiconductor layer (3) formed of an n-type impurity region and a p-type semiconductor layer formed of a p-type impurity region on the n-type semiconductor layer (3). Moreover, in the p-type semiconductor layer, there are provided a p+-type gate region layer (7) extending into the n-type semiconductor layer (3) and containing p-type impurities of an impurity concentration higher than that of the n-type semiconductor layer (3) and an n+-type drain region layer (9) spaced from the p+-type gate region layer (7) by a predetermined distance and containing n-type impurities of an impurity concentration higher than that of the n-type semiconductor layer (3). With this structure, the lateral JFET can be provided that has an ON resistance further decreased while maintaining a high breakdown voltage performance.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: May 5, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Shin Harada, Kenichi Hirotsu, Hiroyuki Matsunami, Tsunenobu Kimoto
  • Publication number: 20080277696
    Abstract: A lateral junction field effect transistor includes a first gate electrode layer arranged in a third semiconductor layer between source/drain region layers, having a lower surface extending on the second semiconductor layer, and doped with p-type impurities more heavily than the second semiconductor layer, and a second gate electrode layer arranged in a fifth semiconductor layer between the source/drain region layers, having a lower surface extending on a fourth semiconductor layer, having substantially the same concentration of p-type impurities as the first gate electrode layer, and having the same potential as the first gate electrode layer. Thereby, the lateral junction field effect transistor has a structure, which can reduce an on-resistance while maintaining good breakdown voltage properties.
    Type: Application
    Filed: July 24, 2008
    Publication date: November 13, 2008
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Kazuhiro Fujikawa, Shin Harada, Kenichi Hirotsu, Satoshi Hatsukawa, Takashi Hoshino, Hiroyuki Matsunami, Tsunenobu Kimoto
  • Patent number: 7420232
    Abstract: A lateral junction field effect transistor includes a first gate electrode layer arranged in a third semiconductor layer between source/drain region layers, having a lower surface extending on the second semiconductor layer, and doped with p-type impurities more heavily than the second semiconductor layer, and a second gate electrode layer arranged in a fifth semiconductor layer between the source/drain region layers, having a lower surface extending on a fourth semiconductor layer, having substantially the same concentration of p-type impurities as the first gate electrode layer, and having the same potential as the first gate electrode layer. Thereby, the lateral junction field effect transistor has a structure, which can reduce an on-resistance while maintaining good breakdown voltage properties.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: September 2, 2008
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kazuhiro Fujikawa, Shin Harada, Kenichi Hirotsu, Satoshi Hatsukawa, Takashi Hoshino, Hiroyuki Matsunami, Tsunenobu Kimoto
  • Patent number: 7321142
    Abstract: On an SiC single crystal substrate, an electric field relaxation layer and a p? type buffer layer are formed. The electric field relaxation layer is formed between the p? type buffer layer and the SiC single crystal substrate to contact SiC single crystal substrate. On the p? type buffer layer, an n type semiconductor layer is formed. On the n type semiconductor layer, a p type semiconductor layer is formed. In the p type semiconductor layer, an n+ type source region layer and an n+ type drain region layer are formed separated by a prescribed distance from each other. At a part of the region of p type semiconductor layer between the n+ type source region layer and the n+ type drain region layer, a p+ type gate region layer is formed.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: January 22, 2008
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kazuhiro Fujikawa, Shin Harada, Hiroyuki Matsunami, Tsunenobu Kimoto
  • Patent number: 7297989
    Abstract: Disclosed are a diboride single crystal substrate which has a cleavage plane as same as that of a nitride compound semiconductor and is electrically conductive; a semiconductor laser diode and a semiconductor device using such a substrate and methods of their manufacture wherein the substrate is a single crystal substrate 1 of diboride XB2 (where X is either Zr or Ti) which is facially oriented in a (0001) plane 2 and has a thickness of 0.1 mm or less. The substrate 1 is permitted cleaving and splitting along a (10-10) plane 4 with ease. Using this substrate to form a semiconductor laser diode of a nitride compound, a vertical structure device can be realized. Resonant planes of a semiconductor laser diode with a minimum of loss can be fabricated by splitting the device in a direction parallel to the (10-10) plane. A method of manufacture that eliminates a margin of cutting is also realized.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: November 20, 2007
    Assignees: National Institute for Materials Science, Kyocera Corporation
    Inventors: Shigeki Otani, Hiroyuki Kinoshita, Hiroyuki Matsunami, Jun Suda, Hiroshi Amano, Isamu Akasaki, Satoshi Kamiyama
  • Patent number: 7266170
    Abstract: A control signal that runs a control oscillator of a signal generation circuit that generates a write clock is taken as a reference signal. That reference signal is supplied to a signal generation circuit that generates a read clock. In the signal generation circuit that generates the read clock, there is no need to generate a reference signal within its own circuits, which makes it possible to supply it to a control oscillator by adding the error timing from reading out the signal against the supplied reference signal. In this way, no means for locking the read clock into the initial frequency is needed and neither is the time for locking the read clock to the initial frequency (lock up time). This makes it possible to reduce the size of the circuit and to reduce the signal read-out time.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: September 4, 2007
    Assignee: Fujitsu Limited
    Inventors: Hiroyuki Matsunami, Kouji Okada
  • Publication number: 20070186858
    Abstract: A susceptor used in semiconductor epitaxial growth that can simultaneously obtain a plurality of epitaxial films high in uniformity. The susceptor includes a barrel type susceptor having a plurality of surfaces on an outer side of each of which a plurality of substrates can be freely disposed, and a member that has the barrel type susceptor disposed inside thereof and surfaces each of which is oppositely disposed tilting in the same direction as each of the surfaces of the barrel type susceptor. Alternatively, a susceptor includes a barrel type susceptor having a plurality of surfaces on an inner side of each of which a plurality of substrates can be freely disposed, and a member that has the barrel type susceptor disposed at the peripheral portion thereof and surfaces each of which is oppositely disposed tilting in the same direction as each of the surfaces of the barrel type susceptor.
    Type: Application
    Filed: March 28, 2005
    Publication date: August 16, 2007
    Applicant: Toyo Tanso Co., Ltd.
    Inventors: Tunenobu Kimoto, Hiroyuki Matsunami, Hirokazu Fujiwara
  • Patent number: 7241694
    Abstract: A method for manufacturing a silicon carbide semiconductor device includes the steps of: forming a trench mask on an upper surface of a semiconductor substrate; forming the trench such that the trench having an aspect ratio equal to or larger than 2 and having a trench slanting angle equal to or larger than 80 degrees is formed; and removing a damage portion in such a manner that the damage portion disposed on an inner surface of the trench formed in the semiconductor substrate in the step of forming the trench is etched and removed in hydrogen atmosphere under decompression pressure at a temperature equal to or higher than 1600° C.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: July 10, 2007
    Assignee: DENSO Corporation
    Inventors: Yuuichi Takeuchi, Rajesh Kumar Malhan, Hiroyuki Matsunami, Tsunenobu Kimoto
  • Patent number: 7113047
    Abstract: To present a clock generator capable of spreading the spectrum of oscillation frequency by simple control in a small additional circuit, and its control method. A phase locked loop circuit is provided from a frequency phase comparator 11, an output clock signal PO is outputted from a voltage control oscillator (VCO) 14 by way of a charge pump circuit (CP) 12 and a loop filter (LF) 13, and is returned to the frequency phase comparator 11 by way of a frequency divider (DIV) 15. Detecting the phase difference of reference clock signal R and divided clock signal D, and locking the oscillation frequency of the output clock signal PO to specified frequency, a modulation signal M is outputted from a modulation pulse generator 1 regardless of phase locked control of phase locked loop circuit, and is superposed on phase comparison signal P, and thereby the oscillation frequency of output clock signal PO is modulated. An output clock signal PO having a predetermined spectrum spread characteristic can be obtained.
    Type: Grant
    Filed: October 20, 2004
    Date of Patent: September 26, 2006
    Assignee: Fujitsu Limited
    Inventor: Hiroyuki Matsunami
  • Publication number: 20060202238
    Abstract: A lateral junction field effect transistor includes a first gate electrode layer arranged in a third semiconductor layer between source/drain region layers, having a lower surface extending on the second semiconductor layer, and doped with p-type impurities more heavily than the second semiconductor layer, and a second gate electrode layer arranged in a fifth semiconductor layer between the source/drain region layers, having a lower surface extending on a fourth semiconductor layer, having substantially the same concentration of p-type impurities as the first gate electrode layer, and having the same potential as the first gate electrode layer. Thereby, the lateral junction field effect transistor has a structure, which can reduce an on-resistance while maintaining good breakdown voltage properties.
    Type: Application
    Filed: April 11, 2006
    Publication date: September 14, 2006
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Kazuhiro Fujikawa, Shin Harada, Kenichi Hirotsu, Satoshi Hatsukawa, Takashi Hoshino, Hiroyuki Matsunami, Tsunenobu Kimoto
  • Publication number: 20060194379
    Abstract: A field effect transistor comprises a SiC substrate 1, a source 3a and a drain 3b formed on the surface of the SiC substrate 1, an insulating structure comprising an AlN layer 5 formed in contact with the SiC surface and having a thickness of one molecule-layer or greater, and a SiO2 layer formed thereon, and a gate electrode 15 formed on the insulation structure. Leakage current can be controlled while the state of interface with SiC is maintained in a good condition.
    Type: Application
    Filed: July 28, 2004
    Publication date: August 31, 2006
    Inventors: Jun Suda, Hiroyuki Matsunami