Patents by Inventor Hiroyuki Yasuda

Hiroyuki Yasuda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210176463
    Abstract: The present disclosure relates to an image processing apparatus and a method designed to maintain subjective image quality. An intra prediction unit and a motion compensation unit calculate the costs of the modes of the respective blocks constituting the current frame. An intra refresh determination unit selects modes of the respective blocks, on the basis of the calculated costs and refreshed blocks that are the blocks refreshed in the previous frame that is located before the current frame timewise. The present disclosure can be applied to an image processing apparatus, an image encoding device, an image decoding device, or the like, for example.
    Type: Application
    Filed: December 4, 2018
    Publication date: June 10, 2021
    Inventor: HIROYUKI YASUDA
  • Publication number: 20210118591
    Abstract: A cable stopper structure and an image forming apparatus includes a cable disposed throughout a first passage and a second passage, the second passage having a ceiling height higher than a ceiling height of the first passage, a first component disposed in the first passage and connected to one end portion of the cable, and a second component disposed near an exit of the first passage and connected to the other end portion of the cable, the second component being removable in a direction away from the first component. The cable includes a folded-back portion folded back in the second passage and a rigid portion disposed between the folded-back portion and the first component. The rigid portion has a rigidity greater than that of the cable and has a length in a pulling-out direction of the cable longer than the ceiling height of the first passage.
    Type: Application
    Filed: November 11, 2019
    Publication date: April 22, 2021
    Inventors: Gen MATSUSHIMA, Takeo KOMIYAMA, Hiroyuki YASUDA, Katsunori SHIMIZU
  • Patent number: 10928358
    Abstract: Under the control of a DDA (data dependent acquisition) execution controller (281), LC/MSn analysis data are acquired with a measurement unit (1) and stored in a measurement data storage section (23). In the case where the MSn analysis is automatically performed, a precursor ion intensity, TIC value and BPC value are also stored and related to the measurement data. In an analysis of the data, a spectrum display condition setter (25) displays, on a display unit (4), a setting window for allowing an analysis operator to enter a precursor ion intensity threshold as well as a product ion intensity threshold which is either the TIC or BPC value, and stores the entered values as a judgment condition in a spectrum display condition storage section (26).
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: February 23, 2021
    Assignee: SHIMADZU CORPORATION
    Inventor: Hiroyuki Yasuda
  • Patent number: 10796939
    Abstract: A temporary adhesive film roll for substrate processing, includes: a roll axis and a composite film-shaped temporary-adhesive material for temporarily bonding a substrate to a support, the composite film-shaped temporary-adhesive material being rolled up around the roll axis; wherein the composite film-shaped temporary-adhesive material includes a first temporary adhesive layer composed of a thermoplastic resin, a second temporary adhesive layer composed of a thermosetting resin, and a third temporary adhesive layer composed of a thermosetting resin which is different from that of the second temporary adhesive layer.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: October 6, 2020
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Masahito Tanabe, Michihiro Sugo, Kazunori Kondo, Hiroyuki Yasuda
  • Publication number: 20200292509
    Abstract: When chromatogram data for a target sample have been acquired, a peak position estimator determines an estimated result of the position of the starting and/or ending point of a peak as well as the confidence value representing the reliability of the estimation, using a trained model stored in the trained model storage section. Normally, a plurality of estimated results of the starting point and/or ending point of the peak are acquired for one peak. A peak information correction processor identifies a candidate having the highest confidence as a prime candidate, and superposes a plurality of candidates including the prime candidate, with their respective confidence values, on a displayed chromatogram. An operator referring to the confidence values selects a peak which needs close checking or correction, and corrects the starting point and/or ending point of the selected peak, for example, by selecting and indicating a candidate other than the prime candidate.
    Type: Application
    Filed: November 9, 2017
    Publication date: September 17, 2020
    Applicant: SHIMADZU CORPORATION
    Inventors: Takeshi OSOEKAWA, Yusuke HIDA, Yuzi KANAZAWA, Shinji KANAZAWA, Yohei YAMADA, Hiroyuki YASUDA, Akihiro KUNISAWA
  • Publication number: 20200279408
    Abstract: A model constructed by a training process using the technique of deep learning using the training data including images created from a large number of chromatograms and correct peak information is previously stored in a trained model storage section. When chromatogram data for a target sample acquired with an LC measurement unit are inputted, an image creator converts the chromatogram into an image and creates an input image in which one of the two areas divided by the chromatogram curve as the boundary in the image is filled. A peak position estimator inputs the pixel values of the input image into a trained model using a neural network, and obtains the position information of the starting point and/or ending point of the peak and a peak detection confidence as the output. A peak determiner determines the starting point and/or ending point of each peak based on the peak detection confidence.
    Type: Application
    Filed: November 9, 2017
    Publication date: September 3, 2020
    Applicant: SHIMADZU CORPORATION
    Inventors: Takeshi OSOEKAWA, Yusuke HIDA, Yuzi KANAZAWA, Shinji KANAZAWA, Yohei YAMADA, Hiroyuki YASUDA, Akihiro KUNISAWA, Hidetoshi TERADA
  • Patent number: 10752579
    Abstract: A method of production of carbamic acid ester has a high yield and high selectivity and is superior in economy. The method of production of a carbamic acid ester includes reacting an amine, carbon dioxide, and an alkoxysilane compound in the presence of a catalyst containing a zinc compound or an alkali metal compound or in the presence of an ionic liquid. A carbamic acid ester is produced, for example by reacting aniline, carbon dioxide, and tetramethoxysilane at a temperature of 150 to 180° C. in the presence of zinc acetate and 2,2?-bipyridine.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: August 25, 2020
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Jun-Chul Choi, Norihisa Fukaya, Qiao Zhang, Hiroyuki Yasuda
  • Patent number: 10738190
    Abstract: A resin composition includes: (a) a supported platinum catalyst having a structure shown by the following general formula (1) in which a platinum complex is supported on a surface of an inorganic oxide; and (b) a thermoplastic matrix resin. The resin composition is usable as an addition-reaction catalyst capable of imparting sufficient storability and quick curability to an addition-reaction curable composition. In the formula, L represents a ligand selected from carbon monoxide, an olefin compound, an amine compound, a phosphine compound, an N-heterocyclic carbene compound, a nitrile compound, and an isocyanide compound; and n represents the number of Ls and an integer from 0 to 2.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: August 11, 2020
    Assignees: SHIN-ETSU CHEMICAL CO., LTD., NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Masayuki Ikeno, Takeshi Miyao, Takeharu Toyoshima, Jun-chul Choi, Norihisa Fukaya, Hiroyuki Yasuda
  • Patent number: 10727103
    Abstract: Disclosed herein is a semiconductor device including: a support; a double-layered adhesive resin layer formed on the support, an insulating layer and a redistribution layer formed on the adhesive resin layer; a chip layer, and a mold resin layer, wherein the adhesive resin layer includes a resin layer A containing a resin decomposable by light irradiation and a resin layer B containing a non-silicone-based thermoplastic resin, the resin layer A and the resin layer B being provided in this order from the support side, the resin decomposable by light irradiation is a resin containing a fused ring in its main chain, and the non-silicone-based thermoplastic resin has a glass transition temperature of 200° C. or higher.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: July 28, 2020
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hiroyuki Yasuda, Michihiro Sugo
  • Publication number: 20200188897
    Abstract: An organometallic complex catalyst is disclosed for use in a cross-coupling reaction. In formula (1), M is the coordination center and represents a metal atom such as Pd or an ion thereof. R1, R2, and R3 may be the same or different and are a substituent such as a hydrogen atom. R4, R5, R6, and R7 may be the same or different and are a substituent such as a hydrogen atom. X represents a halogen atom. R8 represents a substituent that has a ? bond and 3-20 carbon atoms. With regard to the electron-donating properties of R1-R7 with respect to the coordination center M of the ligand containing R1-R7 that is indicated in formula (2), R1-R7 are arranged in combination such that the TEP value obtained from infrared spectroscopy shifts toward the low frequency side compared to the TEP value of the ligand of formula (2-1).
    Type: Application
    Filed: December 6, 2017
    Publication date: June 18, 2020
    Applicants: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, N.E. CHEMCAT CORPORATION
    Inventors: Junchul Choi, Norihisa Fukaya, Shunya Onozawa, Kazuhiko Sato, Hiroyuki Yasuda, Tomoteru Mizusaki, Yukio Takagi
  • Patent number: 10658314
    Abstract: Disclosed herein is a wafer laminate suitable for production of thin wafers and a method for producing the wafer laminate. The wafer laminate can be formed easily by bonding between the support and the wafer and it can be easily separated from each other. It promotes the productivity of thin wafers. The wafer laminate includes a support, an adhesive layer formed on the support, and a wafer which is laminated on the adhesive layer in such a way that that surface of the wafer which has the circuit surface faces toward the adhesive layer, wherein the adhesive layer is a cured product of an adhesive composition composed of resin A and resin B, the resin A having the light blocking effect and the resin B having the siloxane skeleton.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: May 19, 2020
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hiroyuki Yasuda, Michihiro Sugo, Hideto Kato
  • Publication number: 20200134891
    Abstract: Perception of the relationship between a comfort level and environmental data is facilitated, and appropriate management of air-conditioning equipment is enabled.
    Type: Application
    Filed: June 28, 2018
    Publication date: April 30, 2020
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yoshihiro OHTA, Natsumi TAMURA, Kenji SATO, Satoko TOMITA, Kazuyuki NAGAHIRO, Kazuo TOMISAWA, Takayoshi IIDA, Hiroyuki YASUDA, Yoshinori NAKAJIMA
  • Patent number: 10594195
    Abstract: A manufacturing method for a stator winding coil includes: a bulging portion forming step that forms a bulging portion on a conductor wire; a crank portion forming step that forms a crank portion on the central portion of the bulging portion; an oblique portion forming step that forms oblique portions on the conductor wire at two ends of the bulging portion; a rectilinear portion forming step that forms rectilinear portions on the conductor wire at opposite ends of the oblique portions from the bulging portion; and a circular arc forming step that forms the oblique portions into a circular arc shape after forming the rectilinear portions.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: March 17, 2020
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Hironori Tsuiki, Tatsuro Hino, Atsushi Sakaue, Kazunori Muto, Hiroyuki Yasuda, Kohei Egashira, Akira Hashimoto, Hiroyuki Akita
  • Publication number: 20200075388
    Abstract: A method for producing a thin wafer includes: separating the support body from the laminate by irradiating a wafer laminate, which includes a support body, an adhesive layer formed on the support body, and a wafer laminated with a surface thereof including a circuit plane facing the adhesive layer, with light from a side of the support body of the wafer laminate; and after separating, removing a resin layer remaining on the wafer from the wafer by peeling, wherein the adhesive layer includes only a resin layer A with a light-blocking property, and a resin layer B including a thermosetting silicone resin or a non-silicone thermoplastic resin in this order from the side of the support body.
    Type: Application
    Filed: August 28, 2019
    Publication date: March 5, 2020
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hiroyuki Yasuda, Michihiro Sugo
  • Patent number: 10553552
    Abstract: To provide a wafer laminate which permits easy bonding between a support and a wafer, permits easy delamination of a wafer from a support, enables enhanced productivity of a thin wafer, and is suited to production of a thin wafer, and for a method of producing the wafer laminate. The wafer laminate includes a support, an adhesive layer formed on the support, and a wafer laminated in such a manner that its front surface having a circuit surface faces the adhesive layer. The adhesive layer includes a light-shielding resin layer A and a non-silicone thermoplastic resin-coating resin layer B in this order from the support side. The resin layer A is composed of a resin that contains a repeating unit having a condensed ring, and the resin layer B has a storage elastic modulus E? at 25° C. of 1 to 500 MPa and a tensile break strength of 5 to 50 MPa.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: February 4, 2020
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hiroyuki Yasuda, Michihiro Sugo, Hideto Kato
  • Publication number: 20200035479
    Abstract: A mass spectrometer includes: a target compound input receiving section for receiving an input of one or more target compounds; a measurement execution section for reading MRM measurement conditions, including a plurality of MRM transitions, respectively corresponding to the one or more target compounds from a storage section, and measuring the sample under the MRM measurement conditions; a measured multi-MRM spectrum creation section for creating a measured multi-MRM spectrum indicating an intensity of product ions as a mass peak on a graph having mass-to-charge ratios of the product ions on one axis, the intensity of the product ions acquired by measuring the sample; and a similarity degree calculation section for obtaining for each of the target compounds, a degree of similarity between standard multi-MRM spectrum stored in the storage section and the measured multi-MRM spectrum.
    Type: Application
    Filed: March 23, 2017
    Publication date: January 30, 2020
    Applicant: SHIMADZU CORPORATION
    Inventor: Hiroyuki YASUDA
  • Patent number: 10453227
    Abstract: A mass spectrometry data processing apparatus having a function of displaying a plurality of MSn spectra in an arranged manner is allowed to display these MSn spectra in a state where a user can easily grasp presence or absence of a common neutral loss. A mass spectrometry data processing apparatus 20 that displays, on a display screen, an MSn spectrum resulting from mass spectrometric analysis of n?1 stage dissociation, where n is integer of two or more, of an ion, includes: a precursor ion identifying section 32 configured to identify, for each of a plurality of MSn spectra, a mass-to-charge ratios m/z of a precursor ion from which the MSn spectra are obtained; and a spectrum aligning section 33 configure to display the MSn spectra on the display screen in a vertically arranged manner such that positions of the mass-to-charge ratios m/z of the respective precursor ions are located at a same horizontal position of the display screen.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: October 22, 2019
    Assignee: SHIMADZU CORPORATION
    Inventors: Hiroyuki Yasuda, Yoshikatsu Umemura, Tetsuya Kageyama
  • Patent number: 10453732
    Abstract: A wafer laminate has an adhesive layer (3) sandwiched between a transparent substrate (1) and a water (2), with a circuit-forming surface of the wafer facing the adhesive layer. The adhesive layer (3) includes a first cured resin layer (3a) disposed adjacent the substrate and having light-shielding properties and a second cured resin layer (3b) disposed adjacent the wafer and comprising a cured product of a thermosetting resin composition.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: October 22, 2019
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hiroyuki Yasuda, Michihiro Sugo, Hideto Kato
  • Publication number: 20190308182
    Abstract: An organometallic complex catalyst is disclosed for use in a cross-coupling reaction. In formula (1), M is the coordination center and represents a metal atom such as Pd or an ion thereof. R1, R2, and R3 may be the same or different and are a substituent such as a hydrogen atom. R4, R5, R6, and R7 may be the same or different and are a substituent such as a hydrogen atom. X represents a halogen atom. R8 represents a substituent that has a ? bond and 3-20 carbon atoms. With regard to the electron-donating properties of R1-R7 with respect to the coordination center M of the ligand containing R1-R7 that is indicated in formula (2), R1-R7 are arranged in combination such that the TEP value obtained from infrared spectroscopy shifts toward the high frequency side compared to the TEP value of the ligand of formula (2-1).
    Type: Application
    Filed: December 6, 2017
    Publication date: October 10, 2019
    Applicants: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, N.E. CHEMCAT CORPORATION
    Inventors: Junchul Choi, Norihisa Fukaya, Shunya Onozawa, Kazuhiko Sato, Hiroyuki Yasuda, Tomoteru Mizusaki, Yukio Takagi
  • Patent number: 10373903
    Abstract: A laminate is provided comprising a support, a resin layer, a metal layer, an insulating layer, and a redistribution layer. The resin layer comprises a photo-decomposable resin having light-shielding properties and has a transmittance of up to 20% with respect to light of wavelength 355 nm. The laminate is easy to fabricate and has thermal process resistance, the support is easily separated, and a semiconductor package is efficiently produced.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: August 6, 2019
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hiroyuki Yasuda, Michihiro Sugo, Hideto Kato, Kazunori Kondo