Patents by Inventor Hoi-Sung Chung

Hoi-Sung Chung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9082874
    Abstract: A semiconductor device includes a gate pattern disposed on a semiconductor substrate, a bulk epitaxial pattern disposed in a recess region formed in the semiconductor substrate at a side of the gate pattern, an insert epitaxial pattern disposed on the bulk epitaxial pattern, and a capping epitaxial pattern disposed on the insert epitaxial pattern. The bulk epitaxial pattern has an upper inclined surface that is a {111} crystal plane, and the insert epitaxial pattern includes a specific element that promotes the growth rate of the insert epitaxial pattern on the upper inclined surface.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: July 14, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong Hyuk Kim, Dongsuk Shin, Hoi Sung Chung, Naein Lee
  • Publication number: 20150179795
    Abstract: A semiconductor device including source drain stressors and methods of manufacturing the same are provided. The methods may include forming a recess region in the substrate at a side of a gate pattern, and an inner surface of the recess region may include a first surface of a (100) crystal plane and a second surface of one of {111} crystal planes. The method may further include performing a first selective epitaxial growth (SEG) process to form a base epitaxial pattern on the inner surface of the recess region at a process pressure in a range of about 50 Torr to about 300 Torr. The method may also include performing a second selective epitaxial growth (SEG) process to form a bulk epitaxial pattern on the base epitaxial pattern.
    Type: Application
    Filed: February 19, 2015
    Publication date: June 25, 2015
    Inventors: Dong Hyuk KIM, Hoi Sung Chung, Dongsuk Shin, Naein Lee
  • Publication number: 20150145072
    Abstract: A MOS transistor includes a pair of impurity regions formed in a substrate as spaced apart from each other, and a gate electrode formed on a region of the substrate located between the pair of impurity regions. Each of the impurity regions is formed of a first epitaxial layer, a second epitaxial layer on the first epitaxial layer, and a third epitaxial layer on the second epitaxial layer. The first epitaxial layer is formed of at least one first sub-epitaxial layer and a respective second sub-epitaxial layer stacked on each first sub-epitaxial layer. An impurity concentration of the first sub-epitaxial layer is less than that of the second sub-epitaxial layer.
    Type: Application
    Filed: December 8, 2014
    Publication date: May 28, 2015
    Inventors: DONG HYUK KIM, HOI SUNG CHUNG, MYUNGSUN KIM, DONGSUK SHIN
  • Publication number: 20150140747
    Abstract: A semiconductor device includes a gate pattern disposed on a semiconductor substrate, a bulk epitaxial pattern disposed in a recess region formed in the semiconductor substrate at a side of the gate pattern, an insert epitaxial pattern disposed on the bulk epitaxial pattern, and a capping epitaxial pattern disposed on the insert epitaxial pattern. The bulk epitaxial pattern has an upper inclined surface that is a {111} crystal plane, and the insert epitaxial pattern includes a specific element that promotes the growth rate of the insert epitaxial pattern on the upper inclined surface.
    Type: Application
    Filed: December 10, 2014
    Publication date: May 21, 2015
    Inventors: Dong Hyuk Kim, Dongsuk Shin, Hoi Sung Chung, Naein Lee
  • Patent number: 9023718
    Abstract: A method of fabricating a semiconductor device includes: forming an epitaxial layer on a semiconductor substrate; forming a capping layer having a first thickness on the epitaxial layer; and oxidizing the capping layer in an oxygen atmosphere to form a first gate dielectric layer having a second thickness.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: May 5, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Ho Do, Ha-Jin Lim, Weon-Hong Kim, Hoi-Sung Chung, Moon-Kyun Song, Dae-Kwon Joo
  • Patent number: 9024385
    Abstract: Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a trench in an active region and the trench may include a notched portion of the active region. The methods may also include forming an embedded stressor in the trench. The embedded stressor may include a lower semiconductor layer and an upper semiconductor layer, which has a width narrower than a width of the lower semiconductor layer. A side of the upper semiconductor layer may not be aligned with a side of the lower semiconductor layer and an uppermost surface of the upper semiconductor layer may be higher than an uppermost surface of the active region.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: May 5, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Suk Shin, Hyun-Chul Kang, Dong-Hyun Roh, Pan-Kwi Park, Geo-Myung Shin, Nae-In Lee, Chul-Woong Lee, Hoi-Sung Chung, Young-Tak Kim
  • Publication number: 20150064870
    Abstract: In a semiconductor device, a first active region has a first ?-shape, and the second active region has a second ?-shape. When a line that is perpendicular to the substrate and passes a side surface of a first gate electrode in the first region is defined as a first vertical line, when a line that is perpendicular to the substrate and passes a side surface of a second gate electrode in the second region is defined as a second vertical line, when a shortest distance between the first vertical line and the first trench is defined as a first horizontal distance, and when a shortest distance between the second vertical line and the second trench is defined as a second horizontal distance, a difference between the first horizontal distance and the second horizontal distance is equal to or less than 1 nm.
    Type: Application
    Filed: November 6, 2014
    Publication date: March 5, 2015
    Inventors: Dong-Suk Shin, Myung-Sun Kim, Seong-Jin Nam, Pan-Kwi Park, Hoi-Sung Chung, Nae-In Lee
  • Patent number: 8937343
    Abstract: A semiconductor device includes a gate pattern disposed on a semiconductor substrate, a bulk epitaxial pattern disposed in a recess region formed in the semiconductor substrate at a side of the gate pattern, an insert epitaxial pattern disposed on the bulk epitaxial pattern, and a capping epitaxial pattern disposed on the insert epitaxial pattern. The bulk epitaxial pattern has an upper inclined surface that is a {111} crystal plane, and the insert epitaxial pattern includes a specific element that promotes the growth rate of the insert epitaxial pattern on the upper inclined surface.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: January 20, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong Hyuk Kim, Dongsuk Shin, Hoi Sung Chung, Naein Lee
  • Patent number: 8921192
    Abstract: A MOS transistor includes a pair of impurity regions formed in a substrate as spaced apart from each other, and a gate electrode formed on a region of the substrate located between the pair of impurity regions. Each of the impurity regions is formed of a first epitaxial layer, a second epitaxial layer on the first epitaxial layer, and a third epitaxial layer on the second epitaxial layer. The first epitaxial layer is formed of at least one first sub-epitaxial layer and a respective second sub-epitaxial layer stacked on each first sub-epitaxial layer. An impurity concentration of the first sub-epitaxial layer is less than that of the second sub-epitaxial layer.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: December 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong Hyuk Kim, Hoi Sung Chung, Myungsun Kim, Dongsuk Shin
  • Patent number: 8907426
    Abstract: In a semiconductor device, a first active region has a first ?-shape, and the second active region has a second ?-shape. When a line that is perpendicular to the substrate and passes a side surface of a first gate electrode in the first region is defined as a first vertical line, when a line that is perpendicular to the substrate and passes a side surface of a second gate electrode in the second region is defined as a second vertical line, when a shortest distance between the first vertical line and the first trench is defined as a first horizontal distance, and when a shortest distance between the second vertical line and the second trench is defined as a second horizontal distance, a difference between the first horizontal distance and the second horizontal distance is equal to or less than 1 nm.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: December 9, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Suk Shin, Myung-Sun Kim, Seong-Jin Nam, Pan-Kwi Park, Hoi-Sung Chung, Nae-In Lee
  • Patent number: 8900942
    Abstract: A method of fabricating one or more semiconductor devices includes forming a trench in a semiconductor substrate, performing a cycling process to remove contaminants from the trench, and forming an epitaxial layer on the trench. The cycling process includes sequentially supplying a first reaction gas containing germane, hydrogen chloride and hydrogen and a second reaction gas containing hydrogen chloride and hydrogen onto the semiconductor substrate.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: December 2, 2014
    Assignee: SAMSUNG Electronics Co., Ltd.
    Inventors: Dong Hyuk Kim, Dongsuk Shin, Myungsun Kim, Hoi Sung Chung
  • Publication number: 20140312430
    Abstract: A method of fabricating one or more semiconductor devices includes forming a trench in a semiconductor substrate, performing a cycling process to remove contaminants from the trench, and forming an epitaxial layer on the trench. The cycling process includes sequentially supplying a first reaction gas containing germane, hydrogen chloride and hydrogen and a second reaction gas containing hydrogen chloride and hydrogen onto the semiconductor substrate.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 23, 2014
    Inventors: Dong Hyuk KIM, Dongsuk SHIN, Myungsun KIM, Hoi Sung CHUNG
  • Publication number: 20140141599
    Abstract: A method of fabricating a semiconductor device includes: forming an epitaxial layer on a semiconductor substrate; forming a capping layer having a first thickness on the epitaxial layer; and oxidizing the capping layer in an oxygen atmosphere to form a first gate dielectric layer having a second thickness.
    Type: Application
    Filed: January 28, 2014
    Publication date: May 22, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jin-Ho Do, Ha-Jin Lim, Weon-Hong Kim, Hoi-Sung Chung, Moon-Kyun Song, Dae-Kwon Joo
  • Publication number: 20140138745
    Abstract: Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a trench in an active region and the trench may include a notched portion of the active region. The methods may also include forming an embedded stressor in the trench. The embedded stressor may include a lower semiconductor layer and an upper semiconductor layer, which has a width narrower than a width of the lower semiconductor layer. A side of the upper semiconductor layer may not be aligned with a side of the lower semiconductor layer and an uppermost surface of the upper semiconductor layer may be higher than an uppermost surface of the active region.
    Type: Application
    Filed: September 23, 2013
    Publication date: May 22, 2014
    Inventors: Dong-Suk Shin, Hyun-Chul Kang, Dong-Hyun Roh, Pan-Kwi Park, Geo-Myung Shin, Nae-In Lee, Chul-Woong Lee, Hoi-Sung Chung, Young-Tak Kim
  • Publication number: 20140141589
    Abstract: Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a fast etching region comprising phosphorous in an active region and forming a first trench in the active region by recessing the fast etching region. The methods may also include forming a second trench in the active region by enlarging the first trench using a directional etch process and forming a stressor in the second trench. The second trench may include a notched portion of the active region.
    Type: Application
    Filed: September 23, 2013
    Publication date: May 22, 2014
    Inventors: Dong-Suk SHIN, Chul-Woong Lee, Hoi-Sung Chung, Young-Tak Kim, Nae-In Lee
  • Patent number: 8703592
    Abstract: Provided are methods of forming semiconductor devices. A method may include preparing a semiconductor substrate including a first region and a second region adjacent the first region. The method may also include forming sacrificial pattern covering the second region and exposing the first region. The method may further include forming a capping layer including a faceted sidewall on the first region using selective epitaxial growth (SEG). The faceted sidewall may be separate from the sacrificial pattern. The sacrificial pattern may be removed. Impurity ions may be implanted into the semiconductor substrate.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: April 22, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myung-Sun Kim, Dong-Suk Shin, Dong-Hyuk Kim, Yong-Joo Lee, Hoi-Sung Chung
  • Publication number: 20140087537
    Abstract: A semiconductor device including source drain stressors and methods of manufacturing the same are provided. The methods may include forming a recess region in the substrate at a side of a gate pattern, and an inner surface of the recess region may include a first surface of a (100) crystal plane and a second surface of one of {111} crystal planes. The method may further include performing a first selective epitaxial growth (SEG) process to form a base epitaxial pattern on the inner surface of the recess region at a process pressure in a range of about 50 Torr to about 300 Torr. The method may also include performing a second selective epitaxial growth (SEG) process to form a bulk epitaxial pattern on the base epitaxial pattern.
    Type: Application
    Filed: July 24, 2013
    Publication date: March 27, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Dong Hyuk Kim, Hoi Sung Chung, Dongsuk Shin, Naein Lee
  • Publication number: 20140084350
    Abstract: A semiconductor device includes a gate pattern disposed on a semiconductor substrate, a bulk epitaxial pattern disposed in a recess region formed in the semiconductor substrate at a side of the gate pattern, an insert epitaxial pattern disposed on the bulk epitaxial pattern, and a capping epitaxial pattern disposed on the insert epitaxial pattern. The bulk epitaxial pattern has an upper inclined surface that is a {111} crystal plane, and the insert epitaxial pattern includes a specific element that promotes the growth rate of the insert epitaxial pattern on the upper inclined surface.
    Type: Application
    Filed: September 9, 2013
    Publication date: March 27, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Dong Hyuk Kim, Dongsuk Shin, Hoi Sung Chung, Naein Lee
  • Patent number: 8673747
    Abstract: A method of fabricating a semiconductor device includes: forming an epitaxial layer on a semiconductor substrate; forming a capping layer having a first thickness on the epitaxial layer; and oxidizing the capping layer in an oxygen atmosphere to form a first gate dielectric layer having a second thickness.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: March 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Ho Do, Ha-Jin Lim, Weon-Hong Kim, Hoi-Sung Chung, Moon-Kyun Song, Dae-Kwon Joo
  • Patent number: 8648424
    Abstract: A semiconductor device includes a substrate having a channel region, a gate insulation layer on the channel region, a gate electrode on the gate insulation layer, and source and drain regions in recesses in the substrate on both sides of the channel region, respectively. The source and drain regions include a lower main layer whose bottom surface is located at level above the bottom of a recess and lower than that of the bottom surface of the gate insulation layer, and a top surface no higher than the level of the bottom surface of the gate insulation layer, and an upper main layer contacting the lower main layer and whose top surface extends to a level higher than that of the bottom surface of the gate insulation layer, and in which the lower layer has a Ge content higher than that of the upper layer.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: February 11, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hoi-Sung Chung, Dong-Hyuk Kim, Myung-Sun Kim, Dong-Suk Shin