Patents by Inventor Houri Johari

Houri Johari has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210055321
    Abstract: A microelectromechanical (MEMS) accelerometer has a proof mass and a fixed electrode. The fixed electrode is located relative to the proof mass such that a capacitance formed by the fixed electrode and the proof mass changes in response to a linear acceleration along a sense axis of the accelerometer. The MEMS accelerometer is exposed to heat sources that produce a z-axis thermal gradient in MEMS accelerometer and an in-plane thermal gradient in the X-Y plane of the MEMS accelerometer. The z-axis thermal gradient is sensed with a plurality of thermistors located relative to anchoring regions of a CMOS layer of the MEMS accelerometer. The configuration of the thermistors within the CMOS layer measures the z-axis thermal gradient while rejecting other lateral thermal gradients. Compensation is performed at the accelerometer based on the z-axis thermal gradient.
    Type: Application
    Filed: August 21, 2019
    Publication date: February 25, 2021
    Inventors: David deKoninck, Varun Subramaniam Kumar, Matthew Julian Thompson, Vadim Tsinker, Logeeswaran Veerayah Jayaraman, Sarah Nitzan, Houri Johari-Galle, Jongwoo Shin, Le Jin
  • Patent number: 10914584
    Abstract: In a first aspect, the angular rate sensor comprises a substrate and a rotating structure anchored to the substrate. The angular rate sensor also includes a drive mass anchored to the substrate and an element coupling the drive mass and the rotating structure. The angular rate sensor further includes an actuator for driving the drive mass into oscillation along a first axis in plane to the substrate and for driving the rotating structure into rotational oscillation around a second axis normal to the substrate; a first transducer to sense the motion of the rotating structure in response to a Coriolis force in a sense mode; and a second transducer to sense the motion of the sensor during a drive mode. In a second aspect the angular rate sensor comprises a substrate and two shear masses which are parallel to the substrate and anchored to the substrate via flexible elements. In further embodiments, a dynamically balanced 3-axis gyroscope architecture is provided.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: February 9, 2021
    Assignee: INVENSENSE, INC.
    Inventors: Doruk Senkal, Robert Hennessy, Houri Johari-Galle, Joseph Seeger
  • Patent number: 10794702
    Abstract: A MEMS gyroscope includes a proof mass of a suspended spring mass system that is driven at a drive frequency. The proof mass moves relative to a sense electrode such that an overlap of the proof mass and sense electrode changes during the drive motion. A Coriolis force causes the proof mass to move relative to the sense electrode. The overlap and the movement due to the Coriolis force are sensed, and angular velocity is determined based on the magnitude of a signal generated due to a change in overlap and the Coriolis force.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: October 6, 2020
    Assignee: INVENSENSE, INC.
    Inventors: Doruk Senkal, Houri Johari-Galle, Joseph Seeger
  • Patent number: 10732196
    Abstract: A microelectromechanical (MEMS) accelerometer senses linear acceleration perpendicular to a MEMS device plane of the MEMS accelerometer based on a rotation of a proof mass out-of-plane about a rotational axis. A symmetry axis is perpendicular to the rotational axis. The proof mass includes a symmetric portion that is symmetric about the symmetry axis and that is contiguous with an asymmetric portion that is asymmetric about the symmetry axis.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: August 4, 2020
    Assignee: InvenSense, Inc.
    Inventors: Matthew Thompson, Houri Johari-Galle, Leonardo Baldasarre, Sarah Nitzan, Kirt Williams
  • Publication number: 20200096337
    Abstract: The subject disclosure provides exemplary 3-axis (e.g., GX, GY, and GZ) linear and angular momentum balanced vibratory rate gyroscope architectures with fully-coupled sense modes. Embodiments can employ balanced drive and/or balanced sense components to reduce induced vibrations and/or part to part coupling. Embodiments can comprise two inner frame gyroscopes for GY sense mode and an outer frame or saddle gyroscope for GX sense mode and drive system coupling, drive shuttles coupled to the two inner frame gyroscopes or outer frame gyroscope, and four GZ proof masses coupled to the inner frame gyroscopes for GZ sense mode. Components can be removed from an exemplary overall architecture to fabricate a single axis or two axis gyroscope and/or can be configured such that a number of proof-masses can be reduced in half from an exemplary overall architecture to fabricate a half-gyroscope. Other embodiments can employ a stress isolation frame to reduce package induced stress.
    Type: Application
    Filed: September 21, 2018
    Publication date: March 26, 2020
    Inventors: Doruk Senkal, Robert Hennessy, Houri Johari-Galle, Joe Seeger
  • Patent number: 10571268
    Abstract: A MEMS sensor includes a MEMS layer, a cap layer, and a substrate layer. The MEMS layer includes a suspended spring-mass system that moves in response to a sensed inertial force. The suspended spring-mass system is suspended from one or more anchors. The anchors are coupled to each of the cap layer and the substrate layer by anchoring components. The anchoring components are offset such that a force applied to the cap layer or the substrate layer causes a rotation of the anchor and such that the suspended spring-mass system substantially remains within the original MEMS layer.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: February 25, 2020
    Assignee: InvenSense, Inc.
    Inventors: Matthew Thompson, Houri Johari-Galle, Leonardo Baldasarre, Sarah Nitzan, Kirt Williams
  • Patent number: 10505006
    Abstract: A method includes depositing a silicon layer over a first oxide layer that overlays a first silicon substrate. The method further includes depositing a second oxide layer over the silicon layer to form a composite substrate. The composite substrate is bonded to a second silicon substrate to form a micro-electro-mechanical system (MEMS) substrate. Holes within the second silicon substrate are formed by reaching the second oxide layer of the composite substrate. The method further includes removing a portion of the second oxide layer through the holes to release MEMS features. The MEMS substrate may be bonded to a CMOS substrate.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: December 10, 2019
    Assignee: InvenSense, Inc.
    Inventors: Bongsang Kim, Jongwoo Shin, Joseph Seeger, Logeeswaran Veerayah Jayaraman, Houri Johari-Galle
  • Publication number: 20190187172
    Abstract: Facilitating self-calibration of a sensor device via modification of a sensitivity of the sensor device is presented herein. A sensor system can comprise a sensor component comprising a sensor that generates an output signal based on an external excitation of the sensor; a sensitivity modification component that modifies a sensitivity of the sensor by a defined amount; and a calibration component that measures a first output value of the output signal before a modification of the sensitivity by the defined amount, measures a second output value of the output signal after the modification of the sensitivity by the defined amount, and determines, based on a difference between the first output value and the second output value, an offset portion of the output signal. Further, the calibration component can modify, based on the offset portion, the output signal.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 20, 2019
    Inventors: Matthew Julian Thompson, David deKoninck, Sarah Nitzan, Houri Johari-Galle
  • Publication number: 20190185317
    Abstract: A device comprising a micro-electro-mechanical system (MEMS) substrate with protrusions of different heights that has been integrated with a complementary metal-oxide-semiconductor (CMOS) substrate is presented herein. The MEMS substrate comprises defined protrusions of respective distinct heights from a surface of the MEMS substrate, and the MEMS substrate is bonded to the CMOS substrate. In an aspect, the defined protrusions can be formed from the MEMS substrate. In another aspect, the defined protrusions can be deposited on, or attached to, the MEMS substrate. In yet another aspect, the MEMS substrate comprises monocrystalline silicon and/or polysilicon. In yet even another aspect, the defined protrusions comprise respective electrodes of sensors of the device.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 20, 2019
    Inventors: Jongwoo Shin, Houri Johari-Galle, Bongsang Kim, Joseph Seeger, Dongyang Kang
  • Publication number: 20190178645
    Abstract: A MEMS gyroscope includes a proof mass of a suspended spring mass system that is driven at a drive frequency. The proof mass moves relative to a sense electrode such that an overlap of the proof mass and sense electrode changes during the drive motion. A Coriolis force causes the proof mass to move relative to the sense electrode. The overlap and the movement due to the Coriolis force are sensed, and angular velocity is determined based on the magnitude of a signal generated due to a change in overlap and the Coriolis force.
    Type: Application
    Filed: September 13, 2018
    Publication date: June 13, 2019
    Inventors: Doruk Senkal, Houri Johari-Galle, Joseph Seeger
  • Publication number: 20190169018
    Abstract: A device for reducing package stress sensitivity of a sensor includes one or more anchor points for attaching to a substrate; a rigid frame structure configured to at least partially support the sensor; and a compliant element between each anchor point and the rigid frame structure. Also disclosed is a device for supporting a micro-electro-mechanical (MEMS) sensor comprising four anchor points for attaching to a substrate; a rigid frame structure configured to support the MEMS sensor; and a crab-leg suspension element between each anchor point and the rigid frame structure, wherein the crab-leg suspension element is compliant. A method for reducing package stress sensitivity of a sensor is provided as well.
    Type: Application
    Filed: May 21, 2018
    Publication date: June 6, 2019
    Applicant: InvenSense, Inc.
    Inventors: Doruk SENKAL, Yang LIN, Houri JOHARI-GALLE, Joseph SEEGER
  • Publication number: 20190162538
    Abstract: A MEMS sensor includes a MEMS layer, a cap layer, and a substrate layer. The MEMS layer includes a suspended spring-mass system that moves in response to a sensed inertial force. The suspended spring-mass system is suspended from one or more anchors. The anchors are coupled to each of the cap layer and the substrate layer by anchoring components. The anchoring components are offset such that a force applied to the cap layer or the substrate layer causes a rotation of the anchor and such that the suspended spring-mass system substantially remains within the original MEMS layer.
    Type: Application
    Filed: November 30, 2017
    Publication date: May 30, 2019
    Applicant: InvenSense, Inc.
    Inventors: Matthew Thompson, Houri Johari-Galle, Leonardo Baldasarre, Sarah Nitzan, Kirt Williams
  • Publication number: 20190162747
    Abstract: A microelectromechanical (MEMS) accelerometer senses linear acceleration perpendicular to a MEMS device plane of the MEMS accelerometer based on a rotation of a proof mass out-of-plane about a rotational axis. A symmetry axis is perpendicular to the rotational axis. The proof mass includes a symmetric portion that is symmetric about the symmetry axis and that is contiguous with an asymmetric portion that is asymmetric about the symmetry axis.
    Type: Application
    Filed: November 30, 2017
    Publication date: May 30, 2019
    Applicant: InvenSense, Inc.
    Inventors: Matthew Thompson, Houri Johari-Galle, Leonardo Baldasarre, Sarah Nitzan, Kirt Williams
  • Publication number: 20190120657
    Abstract: A MEMS device may output a signal during operation that may include an in-phase component and a quadrature component. An external signal having a phase that corresponds to the quadrature component may be applied to the MEMS device, such that the MEMS device outputs a signal having a modified in-phase component and a modified quadrature component. A phase error for the MEMS device may be determined based on the modified in-phase component and the modified quadrature component.
    Type: Application
    Filed: December 12, 2018
    Publication date: April 25, 2019
    Inventors: Doruk Senkal, Houri Johari-Galle, Joseph Seeger
  • Publication number: 20190035905
    Abstract: A method includes depositing a silicon layer over a first oxide layer that overlays a first silicon substrate. The method further includes depositing a second oxide layer over the silicon layer to form a composite substrate. The composite substrate is bonded to a second silicon substrate to form a micro-electro-mechanical system (MEMS) substrate. Holes within the second silicon substrate are formed by reaching the second oxide layer of the composite substrate. The method further includes removing a portion of the second oxide layer through the holes to release MEMS features. The MEMS substrate may be bonded to a CMOS substrate.
    Type: Application
    Filed: July 24, 2018
    Publication date: January 31, 2019
    Inventors: Bongsang KIM, Jongwoo SHIN, Joseph SEEGER, Logeeswaran Veerayah JAYARAMAN, Houri JOHARI-GALLE
  • Publication number: 20180238927
    Abstract: A MEMS sensor includes a proof mass that is suspended over a substrate. A sense electrode is located on a top surface of the substrate parallel to the proof mass, and forms a capacitor with the proof mass. The sense electrodes have a plurality of slots that provide improved performance for the MEMS sensor. A measured value sensed by the MEMS sensor is determined based on the movement of the proof mass relative to the slotted sense electrode.
    Type: Application
    Filed: May 4, 2017
    Publication date: August 23, 2018
    Applicant: InvenSense, Inc.
    Inventors: Alexander Castro, Matthew Thompson, Leonardo Baldasarre, Sarah Nitzan, Houri Johari-Galle
  • Publication number: 20180216935
    Abstract: In a first aspect, the angular rate sensor comprises a substrate and a rotating structure anchored to the substrate. The angular rate sensor also includes a drive mass anchored to the substrate and an element coupling the drive mass and the rotating structure. The angular rate sensor further includes an actuator for driving the drive mass into oscillation along a first axis in plane to the substrate and for driving the rotating structure into rotational oscillation around a second axis normal to the substrate; a first transducer to sense the motion of the rotating structure in response to a Coriolis force in a sense mode; and a second transducer to sense the motion of the sensor during a drive mode. In a second aspect the angular rate sensor comprises a substrate and two shear masses which are parallel to the substrate and anchored to the substrate via flexible elements. In further embodiments, a dynamically balanced 3-axis gyroscope architecture is provided.
    Type: Application
    Filed: March 29, 2018
    Publication date: August 2, 2018
    Inventors: Doruk Senkal, Robert Hennessy, Houri Johari-Galle, Joseph Seeger
  • Patent number: 9676614
    Abstract: An encapsulated MEMS device includes stress-relief trenches in a region of its substrate that surrounds the movable micromachined structures and that is covered by a cap, such that the trenches are fluidly exposed to a cavity between the substrate and the cap. A method of fabricating a MEMS device includes fabricating stress-relief trenches through a substrate and fabricating movable micromachined structures, and capping the device prior art encapsulating the device.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: June 13, 2017
    Assignee: Analog Devices, Inc.
    Inventors: Houri Johari-Galle, Michael W. Judy
  • Patent number: 9663349
    Abstract: A MEMS device and method for providing a MEMS device are disclosed. In a first aspect, the MEMS device comprises a first substrate and a second substrate coupled to the first substrate forming a sealed enclosure. A moveable structure is located within the sealed enclosure. An outgassing layer is formed on the first or second substrates and within the sealed enclosure. A first conductive layer is disposed between the moveable structure and the outgassing layer, wherein the first conductive layer allows outgassing species to pass therethrough.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: May 30, 2017
    Assignee: INVENSENSE, INC.
    Inventors: Jongwoo Shin, Houri Johari-Galle, Martin Lim, Joseph Seeger
  • Publication number: 20160376143
    Abstract: A MEMS device and method for providing a MEMS device are disclosed. In a first aspect, the MEMS device comprises a first substrate and a second substrate coupled to the first substrate forming a sealed enclosure. A moveable structure is located within the sealed enclosure. An outgassing layer is formed on the first or second substrates and within the sealed enclosure. A first conductive layer is disposed between the moveable structure and the outgassing layer, wherein the first conductive layer allows outgassing species to pass therethrough.
    Type: Application
    Filed: November 6, 2015
    Publication date: December 29, 2016
    Inventors: Jongwoo SHIN, Houri JOHARI-GALLE, Martin LIM, Joseph SEEGER