Patents by Inventor Hsiu-Wen Huang

Hsiu-Wen Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10434323
    Abstract: Described herein are magnetic neural stimulation systems for the treatment of neurological disorders. One variation of a magnetic neural stimulation system includes magnetic stimulators shaped as helical or ramped coils, where each turn of the coil has an acute turning angle of less than 90 degrees. Also described herein are magnetic neural stimulation systems that include an array of stimulators and one or more shielding components. The shielding components modulate the density profile of the induced eddy currents to increase stimulation to targeted neural tissue regions while decreasing stimulation to non-targeted neural regions. Other variations of magnetic stimulation systems include one or more stimulators and a shield in which some of the induced eddy currents in the shield may act to attenuate the magnetic field in certain regions of the shield.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: October 8, 2019
    Assignee: NeuroPrex Inc.
    Inventors: Hong-Tsz Pan, Zhaoyin Wu, Hsiu-Wen Huang
  • Publication number: 20180071546
    Abstract: Described herein are magnetic neural stimulation systems for the treatment of neurological disorders. One variation of a magnetic neural stimulation system includes magnetic stimulators shaped as helical or ramped coils, where each turn of the coil has an acute turning angle of less than 90 degrees. Also described herein are magnetic neural stimulation systems that include an array of stimulators and one or more shielding components. The shielding components modulate the density profile of the induced eddy currents to increase stimulation to targeted neural tissue regions while decreasing stimulation to non-targeted neural regions. Other variations of magnetic stimulation systems include one or more stimulators and a shield in which some of the induced eddy currents in the shield may act to attenuate the magnetic field in certain regions of the shield.
    Type: Application
    Filed: September 26, 2017
    Publication date: March 15, 2018
    Inventors: Hong-Tsz PAN, Zhaoyin WU, Hsiu-Wen HUANG
  • Patent number: 9899436
    Abstract: An image sensor includes a semiconductor substrate with at least one recess disposed on its surface and in the photosensitive area defined on the surface of the semiconductor substrate, a first-conductivity-type doped region disposed in the semiconductor substrate and in the photosensitive area, and a second-conductivity-type doped region disposed on the surface of the first-conductivity-type doped region and on the surface of the recess. A photosensitive device of the image sensor is formed of the first-conductivity-type doped region and the second-conductivity-type doped region.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: February 20, 2018
    Assignee: Powerchip Technology Corporation
    Inventors: Shih-Ping Lee, Yu-An Chen, Hsiu-Wen Huang, Chuan-Hua Chang
  • Publication number: 20180040651
    Abstract: An image sensor includes a semiconductor substrate with at least one recess disposed on its surface and in the photosensitive area defined on the surface of the semiconductor substrate, a first-conductivity-type doped region disposed in the semiconductor substrate and in the photosensitive area, and a second-conductivity-type doped region disposed on the surface of the first-conductivity-type doped region and on the surface of the recess. A photosensitive device of the image sensor is formed of the first-conductivity-type doped region and the second-conductivity-type doped region.
    Type: Application
    Filed: October 26, 2016
    Publication date: February 8, 2018
    Inventors: Shih-Ping Lee, Yu-An Chen, Hsiu-Wen Huang, Chuan-Hua Chang
  • Patent number: 9814898
    Abstract: Described herein are magnetic neural stimulation systems for the treatment of neurological disorders. One variation of a magnetic neural stimulation system includes magnetic stimulators shaped as helical or ramped coils, where each turn of the coil has an acute turning angle of less than 90 degrees. Also described herein are magnetic neural stimulation systems that include an array of stimulators and one or more shielding components. The shielding components modulate the density profile of the induced eddy currents to increase stimulation to targeted neural tissue regions while decreasing stimulation to non-targeted neural regions. Other variations of magnetic stimulation systems include one or more stimulators and a shield in which some of the induced eddy currents in the shield may act to attenuate the magnetic field in certain regions of the shield.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: November 14, 2017
    Assignee: NeuroPrex Inc.
    Inventors: Hong-tsz Pan, Zhaoyin Wu, Hsiu-Wen Huang
  • Publication number: 20170012080
    Abstract: A method of fabricating a semiconductor device includes the following steps. A substrate including an isolation region and a device region is provided. An overall amorphization process is performed on the substrate to form an amorphous region. Here, a minimum depth of the amorphous region is greater than a maximum depth of at least one of the isolation region and the device region, and the amorphous region covers at least one of the isolation region and the device region. A thermal treatment is performed on the amorphous region.
    Type: Application
    Filed: September 16, 2015
    Publication date: January 12, 2017
    Inventors: Shih-Ping Lee, Yu-An Chen, Hsiu-Wen Huang, Chuan-Hua Chang
  • Publication number: 20160089546
    Abstract: Described herein are magnetic neural stimulation systems for the treatment of neurological disorders. One variation of a magnetic neural stimulation system includes magnetic stimulators shaped as helical or ramped coils, where each turn of the coil has an acute turning angle of less than 90 degrees. Also described herein are magnetic neural stimulation systems that include an array of stimulators and one or more shielding components. The shielding components modulate the density profile of the induced eddy currents to increase stimulation to targeted neural tissue regions while decreasing stimulation to non-targeted neural regions. Other variations of magnetic stimulation systems include one or more stimulators and a shield in which some of the induced eddy currents in the shield may act to attenuate the magnetic field in certain regions of the shield.
    Type: Application
    Filed: October 13, 2015
    Publication date: March 31, 2016
    Inventors: Hong-tsz PAN, Zhaoyin WU, Hsiu-Wen HUANG
  • Patent number: 9205275
    Abstract: Described herein are magnetic neural stimulation systems for the treatment of neurological disorders. One variation of a magnetic neural stimulation system includes magnetic stimulators shaped as helical or ramped coils, where each turn of the coil has an acute turning angle of less than 90 degrees. Also described herein are magnetic neural stimulation systems that include an array of stimulators and one or more shielding components. The shielding components modulate the density profile of the induced eddy currents to increase stimulation to targeted neural tissue regions while decreasing stimulation to non-targeted neural regions. Other variations of magnetic stimulation systems include one or more stimulators and a shield in which some of the induced eddy currents in the shield may act to attenuate the magnetic field in certain regions of the shield.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: December 8, 2015
    Assignee: Neuroprex Inc.
    Inventors: Hong-tsz Pan, Zhaoyin Wu, Hsiu-Wen Huang
  • Publication number: 20150025297
    Abstract: Described herein are magnetic neural stimulation systems for the treatment of neurological disorders. One variation of a magnetic neural stimulation system includes magnetic stimulators shaped as helical or ramped coils, where each turn of the coil has an acute turning angle of less than 90 degrees. Also described herein are magnetic neural stimulation systems that include an array of stimulators and one or more shielding components. The shielding components modulate the density profile of the induced eddy currents to increase stimulation to targeted neural tissue regions while decreasing stimulation to non-targeted neural regions. Other variations of magnetic stimulation systems include one or more stimulators and a shield in which some of the induced eddy currents in the shield may act to attenuate the magnetic field in certain regions of the shield.
    Type: Application
    Filed: August 25, 2014
    Publication date: January 22, 2015
    Inventors: Hong-tsz PAN, Zhaoyin WU, Hsiu-Wen HUANG
  • Patent number: 8847885
    Abstract: An electronic device includes a visual sensor and a display screen. The visual sensor senses whether a user is looking at the display screen. If the user is looking at the display screen, the electronic device adjusts a font size of a font being displayed on the display screen. If the user looks at the display screen for not less than a first predefined time, the electronic device prompts the user to have a rest and turn off the display screen. After the electronic device has been turned off for more than a second predefined time, the display screen is turned on again automatically.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: September 30, 2014
    Assignee: FIH (Hong Kong) Limited
    Inventor: Hsiu-Wen Huang
  • Publication number: 20140235455
    Abstract: A method of detecting hepatocellular carcinoma includes the steps of: detecting a methylation level of a CpG site of HOXA9 gene in a biological sample taken from a suspected subject; and comparing the methylation level to a reference methylation level of a CpG site of HOXA9 gene in another biological sample taken from a normal subject not suffering from hepatocellular carcinoma, wherein when the methylation level is higher than the reference methylation level, the suspected subject is likely to suffer from hepatocellular carcinoma, and wherein each of the biological samples is selected from the group consisting of a blood sample, a serum sample, and a plasma sample.
    Type: Application
    Filed: December 13, 2013
    Publication date: August 21, 2014
    Applicants: ACADEMIA SINICA, TAIPEI MEDICAL UNIVERSITY
    Inventors: Ching-Yu LIN, Jung-Chun LIN, Che-Chang CHANG, Yung-Kai HUANG, Guan Shuh BING, Hsiu-Wen HUANG, Ya-Wen LIN, Hung-Chung LAI, Yu-Lueng SHIH, Chung-Bao HSIEH, Chih-Chi KUO, Pei-Yu LIN, Ming-Song HSIEH, Chien-Jen CHEN
  • Patent number: 8122636
    Abstract: A method for incubating fruiting bodies of Antrodia cinnamomea is disclosed. The method comprises steps of: (a) obtaining a hymenium slice from a fruiting body of Antrodia cinnamomea; (b) transferring the hymenium slice to a selective culture medium for incubation to obtain an isolated strain; (c) transferring the isolated strain to a bagasse culture medium for incubation; (d) subjecting proliferation by liquid culture or solid culture to obtain large-scale liquid spawn or solid spawn; (e) inoculating a wood segment with the liquid spawn or the solid spawn and subjecting incubation; and (f) re-inoculating the wood segment with mixed single-spore colonies of Antrodia cinnamomea and subjecting incubation until fruiting bodies are produced.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: February 28, 2012
    Assignee: Endemic Species Research Insititue, C.O.A.
    Inventors: Chien-Ming Chen, Hsiu-Wen Huang
  • Publication number: 20110126456
    Abstract: A method for incubating fruiting bodies of Antrodia cinnamomea is disclosed. The method comprises steps of: (a) obtaining a hymenium slice from a fruiting body of Antrodia cinnamomea; (b) transferring the hymenium slice to a selective culture medium for incubation to obtain an isolated strain; (c) transferring the isolated strain to a bagasse culture medium for incubation; (d) subjecting proliferation by liquid culture or solid culture to obtain large-scale liquid spawn or solid spawn; (e) inoculating a wood segment with the liquid spawn or the solid spawn and subjecting incubation; and (f) re-inoculating the wood segment with mixed single-spore colonies of Antrodia cinnamomea and subjecting incubation until fruiting bodies are produced.
    Type: Application
    Filed: March 5, 2010
    Publication date: June 2, 2011
    Applicant: ENDEMIC SPECIES RESEARCH INSTITUTE, C.O.A.
    Inventors: Chien-Ming Chen, Hsiu-Wen Huang
  • Patent number: 7323218
    Abstract: Methods of fabricating one-dimensional composite nanofiber on a template membrane with porous array by chemical or physical process are disclosed. The whole procedures are established under a base concept of “secondary template”. First of all, tubular first nanofibers are grown up in the pores of the template membrane. Next, by using the hollow first nanofibers as the secondary templates, second nanofibers are produced therein. Finally, the template membrane is removed to obtain composite nanofibers. Showing superior performance in weight energy density, current discharge efficiency and irreversible capacity, the composite nanofibers are applied to extensive scopes like thin-film battery, hydrogen storage, molecular sieving, biosensor and catalyst support in addition to applications in lithium batteries.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: January 29, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Jin-Ming Chen, Chien-Te Hsieh, Hsiu-Wen Huang, Yue-Hao Huang, Hung-Hsiao Lin, Mao-Huang Liu, Shih-Chieh Liao, Han-Chang Shih
  • Publication number: 20040126305
    Abstract: Methods of fabricating one-dimensional composite nanofiber on a template membrane with porous array by chemical or physical process are disclosed. The whole procedures are established under a base concept of “secondary template”. First of all, tubular first nanofibers are grown up in the pores of the template membrane. Next, by using the hollow first nanofibers as the secondary templates, second nanofibers are produced therein. Finally, the template membrane is removed to obtain composite nanofibers. Showing superior performance in weight energy density, current discharge efficiency and irreversible capacity, the composite nanofibers are applied to extensive scopes like thin-film battery, hydrogen storage, molecular sieving, biosensor and catalyst support except applications in lithium batteries.
    Type: Application
    Filed: April 21, 2003
    Publication date: July 1, 2004
    Inventors: Jin-Ming Chen, Chien-Te Hsieh, Hsiu-Wen Huang, Yue-Hao Huang, Hung-Hsiao Lin, Mao-Huang Liu, Shih-Chieh Liao, Han-Chang Shih
  • Publication number: 20010026993
    Abstract: A semiconductor fabrication method is provided for the fabrication of an isolation structure including, a shallow-trench isolation (STI) structure in an integrated circuit. This method is characterized by the increase in the thickness of the adhesive layer over that of the prior art and also in the use of thermal oxidation process to form the STI structure. The thick adhesive layer can thus resist the stress from thermal expansion of the various component layers in the integrated circuit during heat treatment. Moreover, the resulting STI structure is not formed with recessed edge portions since the hydrofluoric (HF) enchant acts on the silicon dioxide plug in the STI structure with substantially the same etching irate as on the adhesive layer. Moreover, this method includes no chemical-mechanical polish (CMP) process so the problem of scratches on the surface of the silicon dioxide plug as seen in the case of the prior art is avoided.
    Type: Application
    Filed: February 12, 2001
    Publication date: October 4, 2001
    Inventors: Jing-Horng Gau, Hsiu-Wen Huang
  • Patent number: 6255191
    Abstract: A semiconductor fabrication method is provided for the fabrication of an isolation structure including a shallow-trench isolation (STI) structure in an integrated circuit. This method is characterized by the increase in the thickness of the adhesive layer over that of the prior art and also in the use of thermal oxidation process to form the STI structure. The thick adhesive layer can thus resist the stress from thermal expansion of the various component layers in the integrated circuit during heat treatment. Moreover, the resulting STI structure is not formed with recessed edge portions since the hydrofluoric (HF) etchant acts on the silicon dioxide plug in the STI structure with substantially the same etching rate as on the adhesive layer. Moreover, this method includes no chemical-mechanical polish (CMP) process, so the problem of scratches on the surface of the silicon dioxide plug as seen in the case of the prior art is avoided.
    Type: Grant
    Filed: December 17, 1998
    Date of Patent: July 3, 2001
    Assignee: United Microelectronics Corp.
    Inventors: Jing-Horng Gau, Hsiu-Wen Huang
  • Patent number: 6204108
    Abstract: A method of fabricating a capacitor. A crown-shape bottom storage node is formed on a conductive region. The crown-shape bottom storage node has a wavelike interior surface and a hemi-spherical grained exterior surface. A dielectric layer is formed on the bottom storage node, and a top electrode is formed to cover the dielectric layer.
    Type: Grant
    Filed: December 17, 1998
    Date of Patent: March 20, 2001
    Assignee: United Semiconductor Corp.
    Inventors: Jing-Horng Gau, Hsiu-Wen Huang
  • Patent number: 6187629
    Abstract: A method of fabricating a DRAM capacitor. A conductive layer and an amorphous silicon layer are formed on a substrate having a dielectric layer. The amorphous silicon layer and the conductive layer are etched to form a region of a capacitor to expose a portion of the dielectric layer. An opening with a profile having a wider upper portion and a narrower lower portion is formed within the conductive layer, and through the opening, the dielectric layer is then etched through to form a node contact window to expose the substrate. An amorphous silicon spacer is formed on the sidewall of conductive layer of the region of the capacitor and fills the node contact window. A selective HSG-Si, a dielectric layer and a polysilicon layer are formed to achieve the fabrication of the capacitor. The conductive layer, the amorphous silicon layer and the HSG-Si serve as a lower electrode of the capacitor and the polysilicon layer serves as an upper electrode of the capacitor.
    Type: Grant
    Filed: December 4, 1998
    Date of Patent: February 13, 2001
    Assignee: United Semiconductor Corp.
    Inventors: Jing-Horng Gau, Hsiu-Wen Huang, Jhy-Jyi Sze
  • Patent number: 6111283
    Abstract: A triple well structure for an embedded dynamic random access memory uses an ion implantation performed on a portion of the first conductive type substrate between a second conductive type source and a second conductive type deep well. A first conductive type block region is formed between the second conductive type source and the second conductive type deep well.
    Type: Grant
    Filed: February 1, 1999
    Date of Patent: August 29, 2000
    Assignee: United Semiconductor Corp.
    Inventors: Johnny Yang, Hsiu-Wen Huang