Patents by Inventor Igor Kolych

Igor Kolych has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125882
    Abstract: A device includes a transmitter coupled to an antenna, a receiver coupled to the at least one antenna, and a processing device to: cause the transmitter to radiate a radio frequency (RF) signal; receive, via the receiver, a reflective RF signal based on the radiated RF signal; detect, within a data array of the reflective RF signal, a maximum peak among a plurality of signal peaks, the maximum peak being indicative of a first distance to a first object relative to the at least one antenna; and cancel, using cascading peak cancellation on the spectrum, the maximum peak while detecting a first next-highest peak of the plurality of signal peaks compared to the maximum peak, the first next-highest peak being indicative of a second distance to a second object.
    Type: Application
    Filed: October 13, 2022
    Publication date: April 18, 2024
    Applicant: Cypress Semiconductor Corporation
    Inventors: Igor KOLYCH, Kiran ULN
  • Patent number: 11958321
    Abstract: Techniques are described for using one or more wireless host devices to perform tire localization of TPMS sensor data by determining received signal strength indicator (RSSI) signatures that are unique to the wireless communication channel between a host device and each TPMS sensor. RSSI signatures represents a periodic variation of the wireless communication channel between a host device on the car body and a TPMS sensor in a rotating tire. Characteristics of the communication channel is a function of the wheel angle and is periodic with wheel rotations. The RSSI signatures may be created by matching RSSI measurements of packets received by the host device from a TPMS sensor with wheel angles derived from wheel speed sensor (WSS) data of the anti-lock braking system (ABS). The RSSI signatures are a unique marker of each wheel that may be used to identify the locations of the TPMS sensors for tire localization.
    Type: Grant
    Filed: August 17, 2022
    Date of Patent: April 16, 2024
    Assignee: Cypress Semiconductor Corporation
    Inventors: Igor Kolych, Victor Simileysky, Kiran Uln, Michael Kandler
  • Publication number: 20240106486
    Abstract: Implementations disclosed describe devices for improving wireless localization and ranging operations. In an example embodiment, a circuit includes a receive chain configured to receive a first signal of a first frequency in a first frequency band. The circuit includes a transmit chain configured to transmit a second signal of a second frequency in a second frequency band. The circuit includes an active reflection circuit coupled between the receive and transmit chains. The active reflection circuit includes a frequency conversion scheme. The frequency conversion scheme is configured to receive an input signal from the RX chain at the first frequency, convert the input signal to an output signal at the second frequency, and provide the output signal to the TX chain.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 28, 2024
    Applicant: Cypress Semiconductor Corporation
    Inventors: Igor KOLYCH, Kiran ULN
  • Publication number: 20240104316
    Abstract: Systems, methods, and devices detect radio frequency identification devices. Methods include transmitting a signal from a transmitter of a wireless device compatible with a wireless communications protocol, and receiving, using a receiver of the wireless device, a signal from a radio frequency identification (RFID) device, the signal comprising one or more resonance parameters. Methods also include generating sensing information and an estimated distance value based, at least in part, on the received signal, the sensing information representing a sensed condition at the RFID device, and the estimated distance value representing an estimate of a distance between the wireless device and the RFID device.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 28, 2024
    Applicant: Cypress Semiconductor Corporation
    Inventor: Igor KOLYCH
  • Publication number: 20240104315
    Abstract: Systems, methods, and devices detect radio frequency identification devices. Methods include transmitting a signal from a transmitter of a wireless device compatible with a wireless communications protocol, receiving, using a receiver of the wireless device, an encoded signal from a radio frequency identification (RFID) device, and determining a plurality of data values based, at least in part, on the received encoded signal. Methods further include generating an estimated distance value based, at least in part, on the received encoded signal, the estimated distance value representing an estimate of a distance between the wireless device and the RFID device.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 28, 2024
    Applicant: Cypress Semiconductor Corporation
    Inventors: Igor KOLYCH, Kiran ULN, Oleksandr KARPIN
  • Publication number: 20240059107
    Abstract: Techniques are described for using one or more wireless host devices to perform tire localization of TPMS sensor data by determining received signal strength indicator (RSSI) signatures that are unique to the wireless communication channel between a host device and each TPMS sensor. RSSI signatures represents a periodic variation of the wireless communication channel between a host device on the car body and a TPMS sensor in a rotating tire. Characteristics of the communication channel is a function of the wheel angle and is periodic with wheel rotations. The RSSI signatures may be created by matching RSSI measurements of packets received by the host device from a TPMS sensor with wheel angles derived from wheel speed sensor (WSS) data of the anti-lock braking system (ABS). The RSSI signatures are a unique marker of each wheel that may be used to identify the locations of the TPMS sensors for tire localization.
    Type: Application
    Filed: August 17, 2022
    Publication date: February 22, 2024
    Applicant: Cypress Semiconductor Corporation
    Inventors: Igor KOLYCH, Victor SIMILEYSKY, Kiran ULN, Michael KANDLER
  • Publication number: 20230353979
    Abstract: Implementations disclosed describe techniques and systems for efficient determination and tracking of trajectories of objects in an environment of a wireless device. The disclosed techniques include, among other things, obtaining multiple sets of sensing values that characterize one or more radio signals received, during a respective sensing event, from an object in an environment of the wireless device. The sensing signals may be carried by waves with randomly selected frequencies representing a portion of all frequencies that are used as working sensing frequencies. Multiple techniques of efficient frequency interpolation and temporal interpolation are disclosed that reconstruct the sensing values to the full range of working frequencies. The reconstructed sensing values may then be used to track objects in the environment.
    Type: Application
    Filed: April 29, 2022
    Publication date: November 2, 2023
    Applicant: Cypress Semiconductor Corporation
    Inventors: Igor KOLYCH, Igor KRAVETS, Oleg KAPSHII, Kiran ULN
  • Publication number: 20230353980
    Abstract: Implementations disclosed describe techniques and systems for efficient determination and tracking of trajectories of objects in an environment of a wireless device. The disclosed techniques include, among other things, determining multiple sets of sensing values that characterize one or more radio signals received, during a respective sensing event, from an object in an environment of the wireless device. Multiple likelihood vectors may be obtained using the sensing values and characterizing a likelihood that the object is at a certain distance from the wireless device. A likelihood tensor may be generated, based on the likelihood vectors, that characterizes a likelihood that the object is moving along one of a set of trajectories. The likelihood tensor may be used to determine an estimate of the trajectory of the object.
    Type: Application
    Filed: April 29, 2022
    Publication date: November 2, 2023
    Applicant: Cypress Semiconductor Corporation
    Inventors: Igor KOLYCH, Kiran ULN
  • Publication number: 20230350042
    Abstract: Implementations disclosed describe techniques and systems for efficient estimation of spatial characteristics of an outside environment of a wireless device. The disclosed techniques include generating multiple covariance matrices (CMs) representative of obtained sensing values. Different CMs may be associated with different frequency increments used in sensing signals to probe the outside environment. The disclosed techniques may further include determining eigenvectors for the CMs, and identifying, based on the determined eigenvectors, one or more spatial characteristics of the object in the outside environment.
    Type: Application
    Filed: April 29, 2022
    Publication date: November 2, 2023
    Applicant: Cypress Semiconductor Corporation
    Inventors: Igor KOLYCH, Kiran ULN
  • Publication number: 20230199456
    Abstract: A method can include determining a plurality of sample sets, each sample set being different from one another and including a plurality of frequencies separated by a uniform frequency range; wirelessly transmitting information identifying the sample sets for at least one remote device; for each sample set, transmitting a tone on each frequency of the sample set, receiving a tone on each frequency of the sample set from another device, and determining phase difference values for the received tones with respect to corresponding transmitted tones. From the phase shift values, a distance to the other device can be estimated. Corresponding devices and systems are also disclosed.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 22, 2023
    Applicant: Cypress Semiconductor Corporation
    Inventors: Igor KOLYCH, Igor KRAVETS, Kiran ULN
  • Publication number: 20230113396
    Abstract: A method can include attaching a sensor device contained in a sensor structure to a body; sensing motion of the body with at least one motion capacitive sensor of the sensor device that senses a capacitance change resulting from a difference in orientation of the motion capacitive sensor and a surface of the body. If motion of the body is not sensed with the motion capacitive sensor, sensor readings can be acquired with a biophysical sensor that emits signals into a portion of the body below the sensor structure, and generate data for a feature of the body with the sensor readings. If motion of the body is not sensed with the motion capacitive sensor, data for the feature of the body is not generated. Related devices and systems are also disclosed.
    Type: Application
    Filed: February 2, 2022
    Publication date: April 13, 2023
    Applicant: Cypress Semiconductor Corporation
    Inventors: Richard SWEET, JR., Igor KOLYCH, Adrian MIKOLAJCZAK
  • Publication number: 20230110841
    Abstract: A system can include one or more electrodes; a sensor structure configured to position electrodes over a surface of a body that includes an artery. A capacitance sensing circuit can be coupled to the electrodes and configured to acquire capacitance values of the electrodes over a predetermined time period. The capacitance values can correspond to a distance between the body surface and the at least one electrode. Processor circuits can be configured to generate APW data from the capacitance values. Corresponding methods and devices are also disclosed.
    Type: Application
    Filed: August 30, 2022
    Publication date: April 13, 2023
    Applicant: Cypress Semiconductor Corporation
    Inventors: Richard SWEET, JR., Igor KOLYCH, Mykhaylo KREKHOVETSKYY, Igor KRAVETS, Oleksandr KARPIN, Andriy MAHARYTA
  • Patent number: 11594066
    Abstract: A fingerprint sensor-compatible overlay material which uses anisotropic conductive material to enable accurate imaging of a fingerprint through an overlay is disclosed. The anisotropic conductive material has increased conductivity in a direction orthogonal to the fingerprint sensor, increasing the capacitive coupling of the fingerprint to the sensor surface, allowing the fingerprint sensor to accurately image the fingerprint through the overlay. Methods for forming a fingerprint sensor-compatible overlay are also disclosed.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: February 28, 2023
    Assignee: Cypress Semiconductor Corporation
    Inventors: Roman Ogirko, Hans Klein, David G. Wright, Igor Kolych, Andriy Maharyta, Hassane El-Khoury, Oleksandr Karpin, Oleksandr Hoshtanar, Igor Kravets
  • Patent number: 11561654
    Abstract: An example method of determining the position value reflecting an action applied to the capacitive sensor device comprises: receive a set of capacitance values of a plurality of capacitive cells of a capacitive sensor device; determining a local maximum of the set of capacitance values; identifying a set of neural network parameters corresponding to the local maximum of the set of capacitance values; and processing the set of capacitance values by a neural network using the identified set of neural network parameters to determine a position value reflecting an action applied to the capacitive sensor device.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: January 24, 2023
    Assignee: Cypress Semiconductor Corporation
    Inventors: Vasyl Mandziy, Oleksandr Karpin, Igor Kolych
  • Publication number: 20220365616
    Abstract: An example method of determining the position value reflecting an action applied to the capacitive sensor device comprises: receive a set of capacitance values of a plurality of capacitive cells of a capacitive sensor device; determining a local maximum of the set of capacitance values; identifying a set of neural network parameters corresponding to the local maximum of the set of capacitance values; and processing the set of capacitance values by a neural network using the identified set of neural network parameters to determine a position value reflecting an action applied to the capacitive sensor device.
    Type: Application
    Filed: May 6, 2021
    Publication date: November 17, 2022
    Applicant: Cypress Semiconductor Corporation
    Inventors: Vasyl Mandziy, Oleksandr Karpin, Igor Kolych
  • Patent number: 11300536
    Abstract: Technology directed to non-contact liquid sensing is described. One processing device includes a multi-port network, a capacitance measurement circuit, and a digital processing circuit. Processing device measures a first set and a second set of currents associated with a first electrode and a second electrode coupled to an exterior surface of a container holding liquid. Processing device determines independent impedances of the container, the liquid, and the liquid and container using the first set of currents and the second set of currents. Processing device determines an electrical property of the liquid using the independent impedances of the liquid.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: April 12, 2022
    Assignee: Cypress Semiconductor Corporation
    Inventors: Igor Kolych, Igor Kravets, Oleksandr Karpin, Andriy Maharyta
  • Publication number: 20210150180
    Abstract: A fingerprint sensor-compatible overlay material which uses anisotropic conductive material to enable accurate imaging of a fingerprint through an overlay is disclosed. The anisotropic conductive material has increased conductivity in a direction orthogonal to the fingerprint sensor, increasing the capacitive coupling of the fingerprint to the sensor surface, allowing the fingerprint sensor to accurately image the fingerprint through the overlay. Methods for forming a fingerprint sensor-compatible overlay are also disclosed.
    Type: Application
    Filed: October 22, 2020
    Publication date: May 20, 2021
    Applicant: Cypress Semiconductor Corporation
    Inventors: Roman Ogirko, Hans Klein, David G. Wright, Igor Kolych, Andriy Maharyta, Hassane El-Khoury, Oleksandr Karpin, Oleksandr Hoshtanar, Igor Kravets
  • Patent number: 10956703
    Abstract: An example system drives one or more transmit signals on first electrodes disposed in a first layer and propagating electrodes disposed in a second layer. The system measures a capacitance of sensors through a of second electrodes. Each second electrode crosses each first electrode to provide a plurality of discrete sensor areas, each discrete sensor area associated with a difference crossing and including a portion of at least one propagating electrode. Each second electrode is galvanically isolated from the first electrodes and the propagating electrodes.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: March 23, 2021
    Assignee: Cypress Semiconductor Corporation
    Inventors: Igor Kravets, Oleksandr Hoshtanar, Igor Kolych, Oleksandr Karpin
  • Patent number: 10832029
    Abstract: A fingerprint sensor-compatible overlay material which uses anisotropic conductive material to enable accurate imaging of a fingerprint through an overlay is disclosed. The anisotropic conductive material has increased conductivity in a direction orthogonal to the fingerprint sensor, increasing the capacitive coupling of the fingerprint to the sensor surface, allowing the fingerprint sensor to accurately image the fingerprint through the overlay. Methods for forming a fingerprint sensor-compatible overlay are also disclosed.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: November 10, 2020
    Assignee: Cypress Semiconductor Corporation
    Inventors: Roman Ogirko, Hans Klein, David G. Wright, Igor Kolych, Andriy Maharyta, Hassane El-Khoury, Oleksandr Karpin, Oleksandr Hoshtanar, Igor Kravets
  • Publication number: 20200005009
    Abstract: An example system drives one or more transmit signals on first electrodes disposed in a first layer and propagating electrodes disposed in a second layer. The system measures a capacitance of sensors through a of second electrodes. Each second electrode crosses each first electrode to provide a plurality of discrete sensor areas, each discrete sensor area associated with a difference crossing and including a portion of at least one propagating electrode. Each second electrode is galvanically isolated from the first electrodes and the propagating electrodes.
    Type: Application
    Filed: May 21, 2019
    Publication date: January 2, 2020
    Applicant: Cypress Semiconductor Corporation
    Inventors: Igor Kravets, Oleksandr Hoshtanar, Igor Kolych, Oleksandr Karpin