Patents by Inventor Igor Kolych

Igor Kolych has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200005009
    Abstract: An example system drives one or more transmit signals on first electrodes disposed in a first layer and propagating electrodes disposed in a second layer. The system measures a capacitance of sensors through a of second electrodes. Each second electrode crosses each first electrode to provide a plurality of discrete sensor areas, each discrete sensor area associated with a difference crossing and including a portion of at least one propagating electrode. Each second electrode is galvanically isolated from the first electrodes and the propagating electrodes.
    Type: Application
    Filed: May 21, 2019
    Publication date: January 2, 2020
    Applicant: Cypress Semiconductor Corporation
    Inventors: Igor Kravets, Oleksandr Hoshtanar, Igor Kolych, Oleksandr Karpin
  • Patent number: 10444887
    Abstract: An apparatus including a first signal generator of a force sensing circuit to output a first excitation (TX) signal on a first terminal and a second TX signal on a second terminal. The first terminal and the second terminal are configured to couple to a first force sensor and a reference sensor. The apparatus includes a first receiver channel coupled to a third terminal and a fourth terminal. The third terminal is configured to couple to the first force sensor and the fourth terminal is configured to couple to the reference sensor. The force sensing circuit is configured to measure a first receive (RX) signal from the first force sensor via the third terminal and a second RX signal from the reference sensor via the fourth terminal. The force sensing circuit is configured to measure a force value indicative of a force applied to the first force sensor.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: October 15, 2019
    Assignee: Cypress Semiconductor Corporation
    Inventors: Igor Kravets, Igor Kolych, Oleksandr Hoshtanar, Jens Weber, Oleksandr Karpin
  • Publication number: 20190294855
    Abstract: A fingerprint sensor-compatible overlay material which uses anisotropic conductive material to enable accurate imaging of a fingerprint through an overlay is disclosed. The anisotropic conductive material has increased conductivity in a direction orthogonal to the fingerprint sensor, increasing the capacitive coupling of the fingerprint to the sensor surface, allowing the fingerprint sensor to accurately image the fingerprint through the overlay. Methods for forming a fingerprint sensor-compatible overlay are also disclosed.
    Type: Application
    Filed: March 27, 2019
    Publication date: September 26, 2019
    Applicant: Cypress Semiconductor Corporation
    Inventors: Roman Ogirko, Hans Klein, David G. Wright, Igor Kolych, Andriy Maharyta, Hassane El-Khoury, Oleksandr Karpin, Oleksandr Hoshtanar, Igor Kravets
  • Publication number: 20190179446
    Abstract: A capacitance sensing device includes a transmit (TX) generator for generating a sequence of receive (RX) signals by applying each TX signal pattern in a sequence of TX signal patterns to a set of sensor electrodes. For each TX signal pattern in the sequence of TX signal patterns, and for each subset of three or more contiguous sensor electrodes of the set of sensor electrodes, the TX generator applies to the subset one of a first excitation signal and a second excitation signal. The plurality of subsets includes at least half of the sensor electrodes in the set of sensor electrodes. The capacitance sensing device also includes a sequencer circuit coupled with the TX generator. For each TX signal pattern in the sequence of TX signal patterns, the sequencer circuit determines a next subsequent TX signal pattern in the sequence based on a circular rotation of the TX signal pattern. The capacitance sensing device also includes a processing block coupled with the TX generator.
    Type: Application
    Filed: June 22, 2018
    Publication date: June 13, 2019
    Applicant: Cypress Semiconductor Corporation
    Inventors: Viktor Kremin, Volodymyr Bihday, Ruslan Omelchuk, Oleksandr Pirogov, Vasyl Mandziy, Roman Ogirko, Ihor Musijchuk, Andriy Maharyta, Igor Kolych, Igor Kravets
  • Patent number: 10303914
    Abstract: An example system drives one or more transmit signals on first electrodes disposed in a first layer and propagating electrodes disposed in a second layer. The system measures a capacitance of sensors through a of second electrodes. Each second electrode crosses each first electrode to provide a plurality of discrete sensor areas, each discrete sensor area associated with a difference crossing and including a portion of at least one propagating electrode. Each second electrode is galvanically isolated from the first electrodes and the propagating electrodes.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: May 28, 2019
    Assignee: Cypress Semiconductor Corporation
    Inventors: Igor Kravets, Oleksandr Hoshtanar, Igor Kolych, Oleksandr Karpin
  • Patent number: 10282585
    Abstract: A fingerprint sensor-compatible overlay material which uses anisotropic conductive material to enable accurate imaging of a fingerprint through an overlay is disclosed. The anisotropic conductive material has increased conductivity in a direction orthogonal to the fingerprint sensor, increasing the capacitive coupling of the fingerprint to the sensor surface, allowing the fingerprint sensor to accurately image the fingerprint through the overlay. Methods for forming a fingerprint sensor-compatible overlay are also disclosed.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: May 7, 2019
    Assignee: Cypress Semiconductor Corporation
    Inventors: Roman Ogirko, Hans Klein, David G. Wright, Igor Kolych, Andriy Maharyta, Hassane El-Khoury, Oleksandr Karpin, Oleksandr Hoshtanar, Igor Kravets
  • Patent number: 10235558
    Abstract: A fingerprint sensor-compatible overlay material which uses anisotropic conductive material to enable accurate imaging of a fingerprint through an overlay is disclosed. The anisotropic conductive material has increased conductivity in a direction orthogonal to the fingerprint sensor, increasing the capacitive coupling of the fingerprint to the sensor surface, allowing the fingerprint sensor to accurately image the fingerprint through the overlay. Methods for forming a fingerprint sensor-compatible overlay are also disclosed.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: March 19, 2019
    Assignee: Cypress Semiconductor Corporation
    Inventors: Hans Klein, Igor Kolych, Oleksandr Karpin, Igor Kravets, Oleksandr Hoshtanar
  • Publication number: 20180365476
    Abstract: A fingerprint sensor-compatible overlay material which uses anisotropic conductive material to enable accurate imaging of a fingerprint through an overlay is disclosed. The anisotropic conductive material has increased conductivity in a direction orthogonal to the fingerprint sensor, increasing the capacitive coupling of the fingerprint to the sensor surface, allowing the fingerprint sensor to accurately image the fingerprint through the overlay. Methods for forming a fingerprint sensor-compatible overlay are also disclosed.
    Type: Application
    Filed: August 27, 2018
    Publication date: December 20, 2018
    Applicant: Cypress Semiconductor Corporation
    Inventors: Roman Ogirko, Hans Klein, David G. Wright, Igor Kolych, Andriy Maharyta, Hassane El-Khoury, Oleksandr Karpin, Oleksandr Hoshtanar, Igor Kravets
  • Patent number: 10061961
    Abstract: A sensor-compatible overlay is disclosed which uses anisotropic conductive material to increase capacitive coupling of a conductive object through the overlay material to a capacitive sensor. The anisotropic conductive material has increased conductivity in a direction orthogonal to the capacitive sensor. In one embodiment, the overlay is configured to enclose a device which includes a capacitive sensor. In another embodiment, the overlay is configured as a glove.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: August 28, 2018
    Assignee: Cypress Semiconductor Corporation
    Inventors: Roman Ogirko, Hans Klein, David G. Wright, Igor Kolych, Andriy Maharyta, Hassane El-Khoury
  • Publication number: 20180081479
    Abstract: An apparatus including a first signal generator of a force sensing circuit to output a first excitation (TX) signal on a first terminal and a second TX signal on a second terminal. The first terminal and the second terminal are configured to couple to a first force sensor and a reference sensor. The apparatus includes a first receiver channel coupled to a third terminal and a fourth terminal. The third terminal is configured to couple to the first force sensor and the fourth terminal is configured to couple to the reference sensor. The force sensing circuit is configured to measure a first receive (RX) signal from the first force sensor via the third terminal and a second RX signal from the reference sensor via the fourth terminal. The force sensing circuit is configured to measure a force value indicative of a force applied to the first force sensor.
    Type: Application
    Filed: June 29, 2017
    Publication date: March 22, 2018
    Applicant: Cypress Semiconductor Corporation
    Inventors: Igor Kravets, Igor Kolych, Oleksandr Hoshtanar, Jens Weber, Oleksandr Karpin
  • Publication number: 20180012055
    Abstract: An example system drives one or more transmit signals on first electrodes disposed in a first layer and propagating electrodes disposed in a second layer. The system measures a capacitance of sensors through a of second electrodes. Each second electrode crosses each first electrode to provide a plurality of discrete sensor areas, each discrete sensor area associated with a difference crossing and including a portion of at least one propagating electrode. Each second electrode is galvanically isolated from the first electrodes and the propagating electrodes.
    Type: Application
    Filed: June 22, 2017
    Publication date: January 11, 2018
    Applicant: Cypress Semiconductor Corporation
    Inventors: Igor Kravets, Oleksandr Hoshtanar, Igor Kolych, Oleksandr Karpin
  • Publication number: 20170262685
    Abstract: A fingerprint sensor-compatible overlay material which uses anisotropic conductive material to enable accurate imaging of a fingerprint through an overlay is disclosed. The anisotropic conductive material has increased conductivity in a direction orthogonal to the fingerprint sensor, increasing the capacitive coupling of the fingerprint to the sensor surface, allowing the fingerprint sensor to accurately image the fingerprint through the overlay. Methods for forming a fingerprint sensor-compatible overlay are also disclosed.
    Type: Application
    Filed: March 29, 2017
    Publication date: September 14, 2017
    Applicant: Cypress Semiconductor Corporation
    Inventors: Hans Klein, Igor Kolych, Oleksandr Karpin, Igor Kravets, Oleksandr Hoshtanar
  • Patent number: 9704012
    Abstract: An example sensor array includes a first electrode disposed in a first layer, multiple second electrodes disposed in a second layer, and multiple third electrodes disposed outside of the first layer. The second electrodes are galvanically isolated from the first electrode and the third electrodes. In a plan view of the fingerprint sensor array, an area of each third electrode is located within an area of the first electrode.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: July 11, 2017
    Assignee: Cypress Semiconductor Corporation
    Inventors: Igor Kravets, Oleksandr Hoshtanar, Igor Kolych, Oleksandr Karpin
  • Publication number: 20170147854
    Abstract: A sensor-compatible overlay is disclosed which uses anisotropic conductive material to increase capacitive coupling of a conductive object through the overlay material to a capacitive sensor. The anisotropic conductive material has increased conductivity in a direction orthogonal to the capacitive sensor. In one embodiment, the overlay is configured to enclose a device which includes a capacitive sensor. In another embodiment, the overlay is configured as a glove.
    Type: Application
    Filed: December 5, 2016
    Publication date: May 25, 2017
    Inventors: Roman Ogirko, Hans Klein, David G. Wright, Igor Kolych, Andriy Maharyta, Hassane El-Khoury
  • Publication number: 20170140196
    Abstract: A fingerprint sensor-compatible overlay material which uses anisotropic conductive material to enable accurate imaging of a fingerprint through an overlay is disclosed. The anisotropic conductive material has increased conductivity in a direction orthogonal to the fingerprint sensor, increasing the capacitive coupling of the fingerprint to the sensor surface, allowing the fingerprint sensor to accurately image the fingerprint through the overlay. Methods for forming a fingerprint sensor-compatible overlay are also disclosed.
    Type: Application
    Filed: November 9, 2016
    Publication date: May 18, 2017
    Applicant: Cypress Semiconductor Corporation
    Inventors: Hans Klein, Igor Kolych, Oleksandr Karpin, Igor Kravets, Oleksandr Hoshtanar
  • Patent number: 9639734
    Abstract: A fingerprint sensor-compatible overlay material which uses anisotropic conductive material to enable accurate imaging of a fingerprint through an overlay is disclosed. The anisotropic conductive material has increased conductivity in a direction orthogonal to the fingerprint sensor, increasing the capacitive coupling of the fingerprint to the sensor surface, allowing the fingerprint sensor to accurately image the fingerprint through the overlay. Methods for forming a fingerprint sensor-compatible overlay are also disclosed.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: May 2, 2017
    Assignee: Cypress Semiconductor Corporation
    Inventors: Hans Klein, Igor Kolych, Oleksandr Karpin, Igor Kravets, Oleksandr Hoshtanar
  • Publication number: 20170076130
    Abstract: An example sensor array includes a first electrode disposed in a first layer, multiple second electrodes disposed in a second layer, and multiple third electrodes disposed outside of the first layer. The second electrodes are galvanically isolated from the first electrode and the third electrodes. In a plan view of the fingerprint sensor array, an area of each third electrode is located within an area of the first electrode.
    Type: Application
    Filed: December 21, 2015
    Publication date: March 16, 2017
    Inventors: Igor Kravets, Oleksandr Hoshtanar, Igor Kolych, Oleksandr Karpin
  • Patent number: 9547788
    Abstract: A fingerprint sensor-compatible overlay which uses anisotropic conductive material to enable accurate imaging of a fingerprint through an overlay is disclosed. The anisotropic conductive material has increased conductivity in a direction orthogonal to the fingerprint sensor, increasing the capacitive coupling of the fingerprint to the sensor surface, allowing the fingerprint sensor to accurately image the fingerprint through the overlay. In one embodiment, the overlay is configured to enclose a device which includes a fingerprint sensor. In another embodiment, the overlay is configured as a glove. Methods for forming a fingerprint sensor-compatible overlay are also disclosed.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: January 17, 2017
    Assignee: CYPRESS SEMICONDUCTOR CORPORATION
    Inventors: Roman Ogirko, Hans Klein, David G. Wright, Igor Kolych, Andriy Maharyta, Hassane El-Khoury
  • Patent number: 9542042
    Abstract: A method performs a scan operation for a single-layer sensor array that includes transmit (TX) electrodes and receive (RX) electrodes. The method includes determining whether to include a signal value for an RX electrode in a computation of a slope parameter value for a TX electrode. The method computes an index sum based on an index of the RX electrode when the signal value for the RX electrode is included in the computation of the slope parameter value for the TX electrode. The method computes a signal sum based on the signal value for the RX electrode when the signal value for the RX electrode is included in the computation of the slope parameter value for the TX electrode. The method then computes the slope parameter value for the TX electrode based on the signal sum and the index sum.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: January 10, 2017
    Assignee: PARADE TECHNOLOGIES, LTD.
    Inventors: Petro Ksondzyk, Vasyl Mandziy, Igor Kolych, Massoud Badaye
  • Patent number: 9411928
    Abstract: Apparatuses and methods of frequency hopping algorithms are described. One method monitors a signal on one or more electrodes of a sense network at a first operating frequency and detects noise in the signal at the first operating frequency. The method then switches to a second operating frequency, based on said detecting, for scanning the electrodes to detect a conductive object proximate to the plurality of electrodes, wherein a constant integration time is used for one half-period when scanning the electrodes at both the first and second operating frequencies.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: August 9, 2016
    Assignee: PARADE TECHNOLOGIES, LTD.
    Inventors: Oleksandr Karpin, Milton Ribeiro, Volodymyr Bihday, Roman Ogirko, Andriy Maharyta, Igor Kolych