Patents by Inventor Inao Toyoda

Inao Toyoda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6887734
    Abstract: In a semiconductor pressure sensor manufacturing method of disposing an etching mask (50) at one-face (11) side of a monocrystal silicon substrate 10 in which the face-direction of the one face 11 corresponds to the (110)-face, and then carrying out anisotropic etching to form a recess portion (20) and a diaphragm (30) at the bottom surface side of the recess portion (20), the etching mask (51) is designed to have a cross-shaped opening portion (51) at which a first area extending along the <110> crystal axis direction and a second area extending along the <100> crystal axis direction cross each other, the area of the opening portion (51a) of the overlap area between the first and second areas in the opening portion (51) being set to be smaller than the area of the diaphragm (30).
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: May 3, 2005
    Assignee: Denso Corporation
    Inventors: Takashi Katsumata, Inao Toyoda
  • Publication number: 20050062121
    Abstract: A sensor device for use in an automobile as an airflow sensor is composed of a silicon substrate in which a cavity is formed and a base plate bonded to the silicon substrate. An upper end of the cavity is closed with a thin membrane including a sensor element such as a temperature sensor element, while a lower end of the cavity is closed with the base plate. An air passage having a small cross-section is formed through the base plate, so that the cavity communicates with the outside air through the air passage. The thin membrane is prevented from being damaged by collision with foreign particles included in the airflow because the air in the cavity functions as a damper. The air passage may be made in the silicon substrate in parallel to its surface without using the base plate.
    Type: Application
    Filed: August 10, 2004
    Publication date: March 24, 2005
    Inventor: Inao Toyoda
  • Patent number: 6870086
    Abstract: In a thermo pile infrared ray sensor, an opening portion is formed by etching a substrate from a second surface after an n-type poly-Si layer and a thin aluminium layer are formed so that first and second connection portions are formed by parts thereof. An infrared ray absorbent layer is formed on the substrate to cover the first connection portion with a screen print after the opening portion is formed.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: March 22, 2005
    Assignees: Denso Corporation, Nippon Soken, Inc
    Inventors: Kazuaki Hamamoto, Takahiko Yoshida, Yasutoshi Suzuki, Inao Toyoda
  • Patent number: 6865951
    Abstract: In a diaphragm (30) having a square shape comprising four sides of a pair of first sides (31, 32) extending along the <110> crystal axis direction and a pair of second sides (33, 34) extending along the <100> crystal axis direction, when an axis bisecting each of the first sides (31, 32) of the diaphragm (30) and passing through the center point of the diaphragm is set as a first axis K1 and an axis vertically-intersecting to the first axis K1 and passing through the center point of the diaphragm is set as a second axis K2, each of the side gages Rs1, Rs2 is located on a virtual line T1, T2, T3, T4 which extends from the center point of each of the center gages Rc1, Rc2 to the peripheral portion of the diaphragm (30) and intersects to the first axis K1 and the second axis K2 at 45°.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: March 15, 2005
    Assignee: Denso Corporation
    Inventors: Takashi Katsumata, Inao Toyoda, Hiroaki Tanaka
  • Publication number: 20050034526
    Abstract: A method of plating a semiconductor wafer while maintaining a uniform thickness of the plated film, preventing the precipitation on the back surface of the wafer and preventing the contamination in the subsequent steps. In directly forming connection terminals on the aluminum electrodes on the semiconductor wafer, the non-electrolytic plating is effected in a state where the back surface of the wafer is covered with an insulator. The insulator is preferably a glass substrate which is a part constituting the product. A semiconductor type sensor exhibits improved corrosion resistance against a corrosive medium. The semiconductor type sensor has, in a semiconductor substrate, a structural portion for detecting the physical quantity or the chemical component of a corrosive medium and an electric quantity conversion element, and has pads which are the output terminals for sending the detected electric signals to an external unit, wherein the pads are protected by a precious metal.
    Type: Application
    Filed: September 28, 2004
    Publication date: February 17, 2005
    Inventors: Keiji Shinyama, Yositugu Abe, Hiroaki Tanaka, Inao Toyoda, Yoshifumi Watanabe, Ichiharu Kondo
  • Patent number: 6833599
    Abstract: A semiconductor magnetic sensor includes a semiconductor substrate, a source, a drain, a gate, and a carrier condensing means. The source and the drain are located in a surface of the substrate. One of the source and the drain includes adjoining two regions. The gate is located between the source and the drain for drawing minority carriers of the substrate to induce a channel, through which the carriers flow between the source and the drain to form a channel carrier current. The carriers flow into the two regions to form two regional carrier currents. The magnitude of a magnetic field where the sensor is placed is measured using the difference in quantity between the two regional carrier currents. The carrier condensing means locally increases carrier density in the channel carrier current in the proximity of an axis that passes between the two regions in order to increase the difference.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: December 21, 2004
    Assignee: Denso Corporation
    Inventors: Inao Toyoda, Noboru Endo
  • Publication number: 20040254306
    Abstract: The invention provides a humidity-sensitive element using, as a humidity-sensitive film, a polyimide having a molecular structure capable of forming a network structure at a high density, exhibiting less drift after being left standing at a high temperature and a high humidity and having excellent characteristics. A humidity-sensitive element according to the invention uses the polyimide obtained by dehydrating and ring closing a polyamide acid forming a network structure in which terminals of basic molecular chains are interconnected with one another, as a humidity-sensitive film. The humidity-sensitive element of the invention suitably uses a polyimide, in which terminals of basic molecular chains are interconnected with one another by use of triamine or a tricarboxylic acid, as a humidity sensitive film.
    Type: Application
    Filed: June 10, 2004
    Publication date: December 16, 2004
    Applicant: DENSO CORPORATION
    Inventors: Toshiki Isogai, Takahiko Yoshida, Inao Toyoda
  • Publication number: 20040180467
    Abstract: In a semiconductor pressure sensor manufacturing method of disposing an etching mask (50) at one-face (11) side of a monocrystal silicon substrate 10 in which the face-direction of the one face 11 corresponds to the (110)-face, and then carrying out anisotropic etching to form a recess portion (20) and a diaphragm (30) at the bottom surface side of the recess portion (20), the etching mask (51) is designed to have a cross-shaped opening portion (51) at which a first area extending along the <110> crystal axis direction and a second area extending along the <100> crystal axis direction cross each other, the area of the opening portion (51a) of the overlap area between the first and second areas in the opening portion (51) being set to be smaller than the area of the diaphragm (30).
    Type: Application
    Filed: March 4, 2004
    Publication date: September 16, 2004
    Applicant: DENSO CORPORATION
    Inventors: Takashi Katsumata, Inao Toyoda
  • Publication number: 20040177699
    Abstract: In a diaphragm (30) having a square shape comprising four sides of a pair of first sides (31, 32) extending along the <110> crystal axis direction and a pair of second sides (33, 34) extending along the <100> crystal axis direction, when an axis bisecting each of the first sides (31, 32) of the diaphragm (30) and passing through the center point of the diaphragm is set as a first axis K1 and an axis vertically-intersecting to the first axis K1 and passing through the center point of the diaphragm is set as a second axis K2, each of the side gages Rs1, Rs2 is located on a virtual line T1, T2, T3, T4 which extends from the center point of each of the center gages Rc1, Rc2 to the peripheral portion of the diaphragm (30) and intersects to the first axis K1 and the second axis K2 at 45°.
    Type: Application
    Filed: March 4, 2004
    Publication date: September 16, 2004
    Applicant: DENSO CORPORATION
    Inventors: Takashi Katsumata, Inao Toyoda, Hiroaki Tanaka
  • Publication number: 20040177685
    Abstract: A pair of comb-tooth-shaped electrodes are formed on the same plane of a semiconductor substrate. A protection film composed of silicon nitride film and humidity sensing film of polyimide-based polymer covers the pair of comb-tooth-shaped electrodes. A moisture-permeable film having a higher dielectric constant than the humidity sensing film and also having moisture-permeability is formed on the humidity sensing film. By this structure, the variation of the electrostatic capacitance between the pair of comb-tooth-shaped electrodes which varies in accordance with humidity variation in the humidity sensing film is increased.
    Type: Application
    Filed: March 4, 2004
    Publication date: September 16, 2004
    Applicant: DENSO CORPORATION
    Inventors: Hisanori Yokura, Inao Toyoda
  • Publication number: 20040173027
    Abstract: A semiconductor pressure sensor includes a semiconductor substrate having a diaphragm for receiving pressure and a bridge circuit for detecting a distortion of the diaphragm corresponding to the pressure. The bridge circuit includes a pair of first gauge resistors and a pair of second gauge resistors. The first gauge resistors are disposed on a center of the diaphragm, and the second gauge resistors are disposed on a periphery of the diaphragm. Each first gauge resistor has a first resistance, which is larger than a second resistance of each second gauge resistor. The TNO property of the sensor is improved, so that the sensor has high detection accuracy.
    Type: Application
    Filed: February 26, 2004
    Publication date: September 9, 2004
    Inventors: Takashi Katsumata, Inao Toyoda, Hiroaki Tanaka
  • Publication number: 20040169242
    Abstract: A pressure detecting device includes a semiconductor substrate (30,200,300, 400) for outputting an electrical signal corresponding to an applied pressure received from a pressure transmitting member (20) having electrically conductive properties disposed on the front surface of the semiconductor substrate (30, 200, 300, 400). The substrate (30, 200, 300, 400) and the pressure transmitting member (20) are accommodated in a housing (10). A lead member (50) electrically independent of the housing (10) is accommodated in the housing (10) at the back surface side of the semiconductor substrate (30, 200, 300, 400), and the lead member (50) and an electrode (35b) of the substrate (30, 200, 300, 400) are electrically connected to each other through conductive adhesive material (40). The housing (10) preferably includes a first portion (101), a second portion (102) having smaller thermal conductivity than the first portion, and an electrically conductive partition portion (103).
    Type: Application
    Filed: January 20, 2004
    Publication date: September 2, 2004
    Inventors: Inao Toyoda, Teruo Oda, Seiichirou Otake, Hiroaki Tanaka
  • Publication number: 20040166601
    Abstract: A semiconductor dynamic quantity sensor detects a dynamic force and a fault diagnosis through the use of a single bridge circuit. Sensor output terminals are connected to midpoints between gauge resistors to make a combination of the midpoints at which an equal electric potential is measured when no pressure is applied to a diaphragm of the sensor. Fault diagnostic output terminals are connected to wiring patterns in the same manner as the first output terminals. One of the sensor output terminals has three selectable terminals connected to different positions of the midpoint. One of the diagnostic output terminals also has three selectable terminals connected to different positions of the wiring patterns. Accordingly, an offset voltage of the sensor output and the fault diagnostic output can be adjusted appropriately when one of the selectable terminals are selected as appropriate.
    Type: Application
    Filed: July 24, 2003
    Publication date: August 26, 2004
    Inventors: Shinji Yoshihara, Inao Toyoda, Yasutoshi Suzuki
  • Publication number: 20040159159
    Abstract: A pressure detector such as a combustion pressure sensor includes a pressure-sensitive element disposed in a cylindrical housing. Electrical signals responsive to pressure applied to the pressure-responsive element are generated in the element and led to output terminals through conductor patterns formed on the surface of a connecting member disposed between the pressure-responsive element and the output terminals. The conductor patterns may be formed in grooves formed on the surface of the connecting member. In place of the connecting member, a disc-shaped thin conductive member made of an anisotropiccally conductive material may be used.
    Type: Application
    Filed: February 17, 2004
    Publication date: August 19, 2004
    Applicant: DENSO CORPORATION
    Inventors: Teruo Oda, Inao Toyoda
  • Patent number: 6777961
    Abstract: A sensor has a series circuit, which includes first and second end terminals, a set of thermocouples electrically connected in series between the first end terminal and the second end terminal, and electrical inspection terminals, which extend from corresponding intermediate points in the series circuit between the first end terminal and the second end terminal to divide the set of thermocouples into smaller groups of thermocouples. A resistance value of each group of thermocouples is measured through adjacent two of the first and second end terminals and the electrical inspection terminals while the sensor is in a wafer state. Whether the thermopile infrared sensor is normal is determined based on the measured resistance value of each group of thermocouples.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: August 17, 2004
    Assignee: Denso Corporation
    Inventors: Kazuaki Hamamoto, Inao Toyoda
  • Patent number: 6742387
    Abstract: A capacitive humidity sensor includes a pair of opposed electrodes on a substrate. A humidity-sensitive film covers the electrodes. The electrodes are comb-shaped and interdigitated. Humidity is detected based on the capacitance between the pair of electrodes, which changes with changes according to the humidity in the atmosphere. The uniform width of each tooth in the pair of electrodes is L1, and the uniform distance between a tooth of one of the electrodes and a tooth of the other electrode is L2. When L1 is less than 3 micrometers, L2 is 5 micrometers. When L1 is greater than or equal to 3 micrometers, L2 is less than or equal to 5 micrometers.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: June 1, 2004
    Assignee: Denso Corporation
    Inventors: Kazuaki Hamamoto, Inao Toyoda
  • Patent number: 6734671
    Abstract: Magnetoresistive devices are formed on the insulating surface of a substrate made of silicon. The devices are connected in series through an insulating film using a wiring layer formed on the surface of the substrate. An insulating film for passivation is formed to cover the devices and the wiring layer. A magnetic shield layer of Ni—Fe alloy is formed on the passivation insulating film through an organic film for relieving thermal stress to cover one of the devices. After removal of the sensor chip containing the magnetoresistive devices and other components from the wafer, the chip is bonded to a lead frame through an Ag paste layer by heat treatment. Preferably, the magnetic shield layer is made of a Ni—Fe alloy having a Ni content of 69% or less.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: May 11, 2004
    Assignee: Denso Corporation
    Inventors: Yuichiro Murata, Inao Toyoda, Yasutoshi Suzuki, Hirofumi Uenoyama, Toshihisa Suzuki, Osamu Mochizuki, Kiyoshi Natsume
  • Publication number: 20040079885
    Abstract: A sensor includes a detector for detecting physical quantity, a membrane, and a stress relaxation area. A stress is expected to concentrate in the stress relaxation area in a case of manufacturing process of the sensor or a case of operating the sensor. The detector is disposed on the membrane except for the stress relaxation area.
    Type: Application
    Filed: September 3, 2003
    Publication date: April 29, 2004
    Inventors: Kazuaki Hamamoto, Inao Toyoda
  • Publication number: 20040061193
    Abstract: A light-receiving element having a light-receiving portion is formed on a chip surface. A digital circuit element, an analog circuit element and a circuit adjusting element are provided for cooperatively processing a detection signal produced from the light-receiving element. And, a light-shielding film is provided for selectively setting a light-receiving region on the chip surface.
    Type: Application
    Filed: July 3, 2003
    Publication date: April 1, 2004
    Inventors: Inao Toyoda, Masaki Takashima, Yasutoshi Suzuki
  • Patent number: 6661225
    Abstract: In a revolution detecting device, a tunneling magnetoresistance sensor having an element located in a region is provided. The tunneling magnetoresistance sensor comprises a substrate, a pinned layer composed of ferromagnetism material and located to one side of the substrate, a tunneling layer composed of insulating film and located to one side of the pinned layer and a free layer composed of ferromagnetism film and located to one side of the tunneling layer. The element is configured to detect a change of magnetoresistance of the element according to a magnetic field applied in the region in which the element is located. The change of the magnetoresistance of the element is based on a change of current flowing through the tunneling layer between the pinned layer and the free layer. In the revolution detecting device, a revolution member is disposed in a vicinity of the element in the Y axis from a viewpoint of the element. The revolution member has a surface portion opposite to the element.
    Type: Grant
    Filed: January 22, 2003
    Date of Patent: December 9, 2003
    Assignee: Denso Corporation
    Inventors: Inao Toyoda, Yasutoshi Suzuki, Yuichiro Murata, Hirofumi Uenoyama