Patents by Inventor Ioannis Kymissis

Ioannis Kymissis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9666600
    Abstract: An indirect bandgap thin film semiconductor circuit can be combined with a compound semiconductor LED such as to provide an active matrix LED array that can have high luminous capabilities such as for a light projector application. In another example, a highly efficient optical detector is achievable through the combination of indirect and direct bandgap semiconductors. Applications can include display technologies, light detection, MEMS, chemical sensors, or piezoelectric systems. An LED array can provide structured illumination, such as for a light and pattern source for projection displays, such as without requiring spatial light modulation (SLM). An example can combine light from separate monolithic light projector chips, such as providing different component colors. An example can provide full color from a single monolithic light projector chip, such as including selectively deposited phosphors, such as to contribute individual component colors to an overall color of a pixel.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: May 30, 2017
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Vincent Wing-Ho Lee, Ioannis Kymissis
  • Publication number: 20160290737
    Abstract: A heating and/or cooling temperature adjusting apparatus disposed proximate a point of use comprising a heat exchange structure, at least one thermal mass unit comprised of a material which changes phase at a predetermined temperature, and a housing which at least partially encloses the heat exchange structure and thermal mass unit. Additionally, a plurality of thermal mass units can be employed, each with equivalent, or differing, temperature threshold points for conversion between solid, liquid or gaseous phases. The presence of the thermal mass unit at the point of use allows for the heating/cooling system to rapidly adjust the temperature of the room while simultaneously decreasing the duty cycle of the heating/cooling generator (e.g. boiler).
    Type: Application
    Filed: April 3, 2015
    Publication date: October 6, 2016
    Inventors: Marshall Cox, Ioannis Kymissis, John Sarik, David Wechsler
  • Patent number: 9431623
    Abstract: The present invention relates to flexible devices including semiconductor nanocrystals, arrays including such devices, systems including the foregoing, and related methods. In one embodiment, a flexible light-emitting device includes a flexible substrate including a first electrode, an emissive layer comprising semiconductor nanocrystals disposed over the substrate, and second electrode disposed over the emissive layer comprising semiconductor nanocrystals, wherein, when the device is curved, the emissive layer comprising semiconductor nanocrystals lies substantially in the neutral plane of the device. In another embodiment, a light-emitting device includes an emissive layer comprising semiconductor nanocrystals disposed between two flexible substrates, a first electrode disposed over the emissive layer comprising semiconductor nanocrystals, and a second electrode disposed under the emissive layer comprising semiconductor nanocrystals.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: August 30, 2016
    Assignee: QD VISION, INC.
    Inventors: Peter T. Kazlas, Marshall Cox, Seth Coe-Sullivan, Ioannis Kymissis
  • Patent number: 9420701
    Abstract: An apparatus comprises a flexible circuit substrate that includes a body portion and at least one connector portion formed monolithically with the body portion. The connector portion is shaped by at least one of one or more bends of the flexible circuit substrate or one or more folds of the flexible circuit substrate, and the connector portion is configured to be received in a receptacle of a connector device. The apparatus also includes at least one electrode formed on the connector portion and configured to make electrical contact with an electrical conductor of the receptacle of the connector device, at least one electronic component on the flexible circuit substrate, and interconnect to provide electrical continuity from the electrode to the electronic component.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: August 16, 2016
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Shyuan Yang, Ioannis Kymissis
  • Publication number: 20160225793
    Abstract: An indirect bandgap thin film semiconductor circuit can be combined with a compound semiconductor LED such as to provide an active matrix LED array that can have high luminous capabilities such as for a light projector application. In another example, a highly efficient optical detector is achievable through the combination of indirect and direct bandgap semiconductors. Applications can include display technologies, light detection, MEMS, chemical sensors, or piezoelectric systems. An LED array can provide structured illumination, such as for a light and pattern source for projection displays, such as without requiting spatial light modulation (SLM). An example can combine light from separate monolithic light projector chips, such as providing different component colors. An example can provide full color from a single monolithic light projector chip, such as including selectively deposited phosphors, such as to contribute individual component colors to an overall color of a pixel.
    Type: Application
    Filed: January 28, 2016
    Publication date: August 4, 2016
    Inventors: Vincent Wing-Ho Lee, Ioannis Kymissis
  • Patent number: 9390920
    Abstract: Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: July 12, 2016
    Assignee: QD VISION, INC.
    Inventors: Seth Coe-Sullivan, Maria J. Anc, Leeann Kim, John E. Ritter, Marshall Cox, Craig Breen, Vladimir Bulovic, Ioannis Kymissis, Robert F. Praino, Jr., Peter T. Kazlas
  • Patent number: 9366571
    Abstract: Apparatus and methods can include an optical waveguide coupled to a photonic crystal comprising a dielectric material, the photonic crystal located on an exterior surface of the optical waveguide and comprising a first surface including a first array of periodic features on or within the dielectric material, the array extending in at least two dimensions and including an effective dielectric permittivity different from the surrounding dielectric material. In an example, the periodic features include a specified lattice constant, the periodic features configured to extract a portion of propagating optical energy from the waveguide through the photonic crystal, the portion determined at least in part by the specified lattice constant.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: June 14, 2016
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Nadia Pervez, Ioannis Kymissis, Zhang Jia, Marshall Cox
  • Patent number: 9293553
    Abstract: A laminated graphene device is demonstrated as a cathode. In one example the devices include organic photovoltaic devices. The measured properties demonstrate work-function matching via contact doping. Devices and method shown also provide increased power conversion efficiency due to transparency. These findings indicate that flexible, light-weight all carbon devices, such as solar cells, can be constructed using graphene as the cathode material.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: March 22, 2016
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Marshall Cox, Ioannis Kymissis, Alon Gorodetsky, Melinda Y. Han, Colin P. Nuckolls, Philip Kim
  • Patent number: 9255912
    Abstract: An apparatus comprises a thin-film bulk acoustic resonator such as including an acoustic mirror, a piezoelectric region acoustically coupled to the acoustic mirror, and first and second conductors electrically coupled to the piezoelectric region. In an example, an integrated circuit substrate can include an interface circuit connected to the first and second conductors of the resonator, the integrated circuit substrate configured to mechanically support the resonator. An example can include an array of such resonators co-integrated with the interface circuit and configured to detect a mass change associated with one or more of a specified protein binding, a specified antibody-antigen coupling, a specified hybridization of a DNA oligomer, or an adsorption of specified gas molecules.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: February 9, 2016
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Matthew Johnston, Kenneth Shepard, Ioannis Kymissis
  • Patent number: 9257606
    Abstract: An indirect bandgap thin film semiconductor circuit can be combined with a compound semiconductor LED such as to provide an active matrix LED array that can have high luminous capabilities such as for a light projector application. In another example, a highly efficient optical detector is achievable through the combination of indirect and direct bandgap semiconductors. Applications can include display technologies, light detection, MEMS, chemical sensors, or piezoelectric systems. An LED array can provide structured illumination, such as for a light and pattern source for projection displays, such as without requiring spatial light modulation (SLM). An example can combine light from separate monolithic light projector chips, such as providing different component colors. An example can provide full color from a single monolithic light projector chip, such as including selectively deposited phosphors, such as to contribute individual component colors to an overall color of a pixel.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: February 9, 2016
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Vincent Wing-Ho Lee, Ioannis Kymissis
  • Patent number: 9252013
    Abstract: A method of depositing a nanomaterial onto a donor surface comprises applying a composition comprising nanomaterial to a donor surface. In another aspect of the invention there is provided a method of depositing a nanomaterial onto a substrate. Methods of making a device including nanomaterial are disclosed. An article of manufacture comprising nanomaterial disposed on a backing member is disclosed.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: February 2, 2016
    Assignee: QD VISION, INC.
    Inventors: Seth Coe-Sullivan, Maria J. Anc, LeeAnn Kim, Vladimir Bulovic, Ioannis Kymissis, John E. Ritter, Robert F. Praino, Jr.
  • Patent number: 9194801
    Abstract: DNA-based temperature sensor for measuring temperature through a transition of one or more strands of DNA from a coupled configuration to a decoupled configuration at a temperature threshold, and a fluorescent dye adapted to emit fluorescence when the DNA is in the coupled configuration, includes a receptacle adapted to receive the DNA and the fluorescent dye in a solution, an imaging device adapted to acquire an image of fluorescence emitted from the solution, the image having a plurality of regions, and a processor adapted to determine a plurality of fluorescence levels corresponding to each of the plurality of regions of the image and to generate a temperature map based on the determined fluorescence levels. A method for measuring temperature and a DNA-based temperature sensing solution are also provided.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: November 24, 2015
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Kenneth L. Shepard, Ioannis Kymissis, Haig Norian
  • Publication number: 20150309081
    Abstract: An apparatus for energy auditing can include a sensor portion on a circuit substrate, the sensor portion defining a first opening, an integrated inductor on the sensor portion, the integrated inductor being formed proximal to the first opening or a hall sensor located on the sensor portion proximal to the first opening, and an electronic circuit on a body portion of the circuit substrate electrically coupled to the integrated inductor and configured to wirelessly transmit information to a wireless receiver.
    Type: Application
    Filed: March 23, 2015
    Publication date: October 29, 2015
    Inventors: Ioannis KYMISSIS, Shyuan YANG, Jun SHIMADA, Fabio CARTA
  • Patent number: 9099661
    Abstract: An organic electrical device can include a first dielectric substrate including a PVDF-TrFe-CFE terpolymer, a first semiconductor region coupled to a first surface of the first dielectric substrate, and a first gate region coupled to a second surface of the first dielectric substrate, the second surface opposite the first surface and opposite the first semiconductor region. The organic electrical device can include an organic field-effect transistor (OFET), comprising the first gate region, the first dielectric substrate, a first source region, and a first drain region respectively electrically coupled to the first semiconductor region. An electrostrictive actuator or mechanical sensor can be co-integrated on the first dielectric substrate, the actuator or sensor including first and second conductive regions located on opposite surfaces of the first dielectric substrate. The actuator or sensor can be electrically coupled to the OFET, and controlled at least in part by the OFET.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: August 4, 2015
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Zhang Jia, Nadia Pervez, Fabio Carta, Ioannis Kymissis
  • Publication number: 20150206747
    Abstract: Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials.
    Type: Application
    Filed: December 8, 2014
    Publication date: July 23, 2015
    Inventors: Seth COE-SULLIVAN, Maria j. Anc, Leeann Kim, John E. Ritter, Marshall Cox, Craig Breen, Vladimir Bulovic, Ioannis Kymissis, Robert F. Praino, JR., Peter T. Kazlas
  • Patent number: 9054329
    Abstract: Light-emitting devices and displays with improved performance are disclosed. A light-emitting device includes an emissive material disposed between a first electrode, and a second electrode. Various embodiments include a device having a peak external quantum efficiency of at least about 2.2%; a device that emits light having a CIE color coordinate of x greater than 0.63; a device having an external quantum efficiency of at least about 2.2 percent when measured at a current density of 5 mA/cm2. Also disclosed is a light-emitting device comprising a plurality of semiconductor nanocrystals capable of emitting red light upon excitation, wherein the device has a peak luminescent efficiency of at least about 1.5 lumens per watt. Also disclosed is a light-emitting device comprising a plurality of semiconductor nanocrystals capable of emitting red light upon excitation, wherein the device has a luminescent efficiency of at least about 1.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: June 9, 2015
    Assignee: QD VISION, INC.
    Inventors: Seth Coe-Sullivan, Dorai Ramprasad, Ioannis Kymissis, Vladimir Bulovic, Marshall Cox, Caroline J. Roush, Peter T. Kazlas, Jonathan S. Steckel
  • Publication number: 20150124252
    Abstract: Apparatus and methods can include an optical waveguide coupled to a photonic crystal comprising a dielectric material, the photonic crystal located on an exterior surface of the optical waveguide and comprising a first surface including a first array of periodic features on or within the dielectric material, the array extending in at least two dimensions and including an effective dielectric permittivity different from the surrounding dielectric material. In an example, the periodic features include a specified lattice constant, the periodic features configured to extract a portion of propagating optical energy from the waveguide through the photonic crystal, the portion determined at least in part by the specified lattice constant.
    Type: Application
    Filed: October 6, 2014
    Publication date: May 7, 2015
    Inventors: Nadia Pervez, Ioannis Kymissis, Zhang Jia, Marshall Cox
  • Patent number: 8906804
    Abstract: Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: December 9, 2014
    Assignee: QD Vision, Inc.
    Inventors: Seth Coe-Sullivan, Maria J. Anc, LeeAnn Kim, John E. Ritter, Marshall Cox, Craig Breen, Vladimir Bulovic, Ioannis Kymissis, Robert F. Praino, Jr.
  • Publication number: 20140326796
    Abstract: An insulated heating-unit cover having an opening to permit air to circulate around the heating-source when a vent disposed at the top of the cover is opened, allowing heat into a space. The cover can include a heating-unit temperature sensor disposed within a space covered by the cover and a controller in wireless communication with a space temperature sensor located at a distance away from the heating-unit. The controller can be configured to operate an actuator such that the vent is open when the space temperature sensor indicates that the ambient temperature is below a set point temperature and such that the vent is closed when the ambient temperature is greater than the set point temperature. The controller can communicate with a plurality of other similar controllers and a central server to effect changes in the output of a central heating source coupled to a plurality of individual heating-units.
    Type: Application
    Filed: February 24, 2012
    Publication date: November 6, 2014
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Ioannis Kymissis, Marshall Cox, John Sarik
  • Patent number: 8854624
    Abstract: Apparatus and methods can include an optical waveguide coupled to a photonic crystal comprising a dielectric material, the photonic crystal located on an exterior surface of the optical waveguide and comprising a first surface including a first array of periodic features on or within the dielectric material, the array extending in at least two dimensions and including an effective dielectric permittivity different from the surrounding dielectric material. In an example, the periodic features include a specified lattice constant, the periodic features configured to extract a portion of propagating optical energy from the waveguide through the photonic crystal, the portion determined at least in part by the specified lattice constant.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: October 7, 2014
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Nadia Pervez, Ioannis Kymissis, Zhang Jia, Marshall Cox