Patents by Inventor Isamu Asano

Isamu Asano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6737318
    Abstract: A method of manufacturing a semiconductor integrated circuit device having a switching MISFET and a capacitor element formed over a semiconductor substrate, such as a DRAM, is disclosed. The dielectric film of the capacitor element is formed to be co-extensive with the capacitor electrode layer over it. The upper electrode of the capacitor element is formed to be larger than the lower electrode.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: May 18, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Jun Murata, Yoshitaka Tadaki, Isamu Asano, Mitsuaki Horiuchi, Jun Sugiura, Hiroko Kaneko, Shinji Shimizu, Atsushi Hiraiwa, Hidetsugu Ogishi, Masakazu Sagawa, Masami Ozawa, Toshihiro Sekiguchi
  • Publication number: 20040089947
    Abstract: Problem: In a semiconductor device having a multilayer structure comprising an insulating film, an adjacent conductive film, and a main conductive film, to provide a highly reliable semiconductor device in which defects in the multilayer structure such as adhesive fracture and cracks are difficult to occur. Further, to provide a highly reliable semiconductor device in which voids and disconnections due to migration are difficult to occur.
    Type: Application
    Filed: July 3, 2003
    Publication date: May 13, 2004
    Inventors: Tomio Iwasaki, Hideo Miura, Isamu Asano
  • Patent number: 6734060
    Abstract: In a peripheral circuit region of a DRAM, two connection holes 17a, 17b for connecting a first layer line 14 and a second layer line 26 electrically are opened separately in two processes. After forming the connection holes 17a and 17b, plugs 18a and 215a are formed in the connection holes 17a and 17b, respectively.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: May 11, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Yoshitaka Nakamura, Isamu Asano, Keizou Kawakita, Satoru Yamada
  • Publication number: 20040061160
    Abstract: It is an object of the present invention to provide a high-reliability semiconductor device having a storage capacitor and wiring using copper for a main conductive film. Under the above object, the present invention provides a semiconductor device comprising: a semiconductor substrate; a storage capacitor formed on the main surface side of the semiconductor substrate and being a first electrode and a second electrode arranged so as to put a capacitor insulation film; a wiring conductor formed on the main surface side of the semiconductor substrate and including the copper (Cu) element; and a first film formed on the surface of the wiring conductor; wherein a material configuring the first film and a material configuring the first electrode and/or the second electrode include the same element.
    Type: Application
    Filed: September 25, 2003
    Publication date: April 1, 2004
    Inventors: Yukihiro Kumagai, Hideo Miura, Hiroyuki Ohta, Tomio Iwasaki, Isamu Asano
  • Publication number: 20040046195
    Abstract: In a peripheral circuit region of a DRAM, two connection holes 17a, 17b for connecting a first layer line 14 and a second layer line 26 electrically are opened separately in two processes. After forming the connection holes 17a and 17b, plugs 18a and 215a are formed in the connection holes 17a and 17b, respectively.
    Type: Application
    Filed: August 29, 2002
    Publication date: March 11, 2004
    Inventors: Yoshitaka Nakamura, Isamu Asano, Keizou Kawakita, Satoru Yamada
  • Publication number: 20040043546
    Abstract: An active region (L) with a metal insulator semiconductor field effect transistor (MISFET) (Qs) formed therein for selection of a DRAM memory cell, which makes up a memory cell of the DRAM, is arranged to have an island-like pattern that linearly extends in an X direction on one principal surface of a semiconductor substrate (1). The memory-cell selection MISFET (Qs) has an insulated gate electrode (7) (word line WL) that extends along a Y direction on the principal surface of the semiconductor substrate (1) with the same width kept along the length thereof, which gate electrode is arranged to oppose another gate electrode (7) (word line WL) adjacent thereto at a prespecified distance or pitch that is narrower than said width.
    Type: Application
    Filed: September 4, 2003
    Publication date: March 4, 2004
    Inventors: Makoto Yoshida, Takahiro Kumauchi, Yoshitaka Tadaki, Isamu Asano, Norio Hasegawa, Keizo Kawakita
  • Patent number: 6696337
    Abstract: In semiconductor integrated circuit device having a DRAM including a memory cell portion formed at a first portion of a main surface of a semiconductor substrate and a peripheral circuit portion formed at a second portion of the main surface of the semiconductor substrate, bit line conductors and first level interconnect conductors in the peripheral circuit portion for connecting the memory cell portion and the peripheral circuit portion so as to exchange signals between them are constituted by conductor layers that are formed simultaneously and hence, exist at the same level. The conductor layers exist at an outside position of the memory cell portion such as in the peripheral circuit portion, and the thickness of portions of the conductor layers constituting the first level interconnect conductors of the peripheral circuit portion is greater than the thickness of portions of the conductor layers constituting the bit line conductors.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: February 24, 2004
    Assignees: Hitachi, Ltd., Texas Instruments Inc.
    Inventors: Isamu Asano, Robert Tsu
  • Publication number: 20040021159
    Abstract: A DRAM of an open bit line structure has a cell area smaller than that of a DRAM of a folded bit line structure and is susceptible to noise. A conventional DRAM of an open bit line structure has a large bit line capacitance and is susceptible to noise or has a large cell area. There has been no DRAM of an open bit line structure having a small bit line capacitance, unsusceptible to noise and having a small cell area. The present invention forms capacitor lower electrode plug holes not aligned with bit lines to reduce bit line capacitance. Bit lines are formed in a small width, capacitor lower electrode plugs are dislocated from positions corresponding to the centers of the bit lines in directions away from the bit lines and the contacts are formed in a reduced diameter to avoid increasing the cell area. Thus a semiconductor storage device of an open bit line structure resistant to noise and having a small cell area is provided.
    Type: Application
    Filed: July 31, 2003
    Publication date: February 5, 2004
    Applicant: Hitachi, Ltd.
    Inventors: Hideyuki Matsuoka, Satoru Yamada, Isamu Asano, Ryo Nagai, Tomonori Sekiguchi, Riichiro Takemura
  • Patent number: 6686619
    Abstract: A semiconductor integrated circuit device and a manufacturing method therefor provide advantages that undulations are prevented from being produced in polycrystal silicon plugs in bit line contact holes and that the undesired phenomenon of transversally etching silicide film at contacts of the bit lines and the polycrystal silicon plugs is avoided. The bit lines formed when forming a first wiring layer are made of a laminate film having a titanium film, a titanium nitride film and a tungsten film, and a titanium silicide film containing nitrogen or oxygen is formed in contact areas of the bit lines and plugs. A titanium silicide film containing nitrogen or oxygen is also formed in contact areas of the first wiring layer and semiconductor substrate. The titanium silicide film may be replaced by silicide film containing nitrogen or oxygen, cobalt silicide film containing nitrogen or oxygen or cobalt silicide film.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: February 3, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Yoshitaka Nakamura, Hideo Aoki, Yoshikazu Ohira, Tadashi Umezawa, Satoru Yamada, Keizou Kawakita, Isamu Asano, Naoki Fukuda, Tsuyoshi Tamaru, Hidekazu Goto, Nobuyoshi Kobayashi
  • Patent number: 6653676
    Abstract: The present invention discloses a novel integrated circuit capacitor and a method of forming such a capacitor. The capacitor formation begins with a base electrode 18 adjacent an insulating region 26. This base electrode 18 can comprise either polysilicon or a metal. A layer 28 of a first material, such as a siliciding metal, is formed over the base electrode 18 as well as the adjacent insulating region. A self-aligned capacitor electrode 12 can then be formed by reacting the first material 28 with the base electrode 18 and removing unreacted portions of the first material 28 from the insulating region 26. The capacitor is then completed by forming a dielectric layer 16 over the self-aligned capacitor electrode 12 and a second capacitor electrode 14 over the dielectric layer 16.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: November 25, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Robert Tsu, Isamu Asano, Shinpei Iijima, William R. McKee
  • Patent number: 6649956
    Abstract: An active region (L) with a metal insulator semiconductor field effect transistor (MISFET) (Qs) formed therein for selection of a DRAM memory cell, which makes up a memory cell of the DRAM, is arranged to have an island-like pattern that linearly extends in an X direction on one principal surface of a semiconductor substrate (1). The memory-cell selection MISFET (Qs) has an insulated gate electrode (7) (word line WL) that extends along a Y direction on the principal surface of the semiconductor substrate (1) with the same width kept along the length thereof, which gate electrode is arranged to oppose another gate electrode (7) (word line WL) adjacent thereto at a prespecified distance or pitch that is narrower than said width.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: November 18, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Yoshida, Takahiro Kumauchi, Yoshitaka Tadaki, Isamu Asano, Norio Hasegawa, Keizo Kawakita
  • Publication number: 20030211673
    Abstract: A semiconductor integrated circuit device and a manufacturing method therefor provide advantages that undulations are prevented from being produced in polycrystal silicon plugs in bit line contact holes and that the undesired phenomenon of transversally etching silicide film at contacts of the bit lines and the polycrystal silicon plugs is avoided. The bit lines formed when forming a first wiring layer are made of a laminate film having a titanium film, a titanium nitride film and a tungsten film, and a titanium silicide film containing nitrogen or oxygen is formed in contact areas of the bit lines and plugs. A titanium silicide film containing nitrogen or oxygen is also formed in contact areas of the first wiring layer and semiconductor substrate. The titanium silicide film may be replaced by silicide film containing nitrogen or oxygen, cobalt silicide film containing nitrogen or oxygen or cobalt silicide film.
    Type: Application
    Filed: June 6, 2003
    Publication date: November 13, 2003
    Inventors: Yoshitaka Nakamura, Hideo Aoki, Yoshikazu Ohira, Tadashi Umezawa, Satoru Yamada, Keizou Kawakita, Isamu Asano, Naoki Fukuda, Tsuyoshi Tamaru, Hidekazu Goto, Nobuyoshi Kobayashi
  • Publication number: 20030205811
    Abstract: To prevent Al wiring formed on a via-hole in which a CVD-TiN film is embedded from corroding.
    Type: Application
    Filed: June 4, 2003
    Publication date: November 6, 2003
    Applicant: Hitachi, Ltd.
    Inventors: Yoshitaka Nakamura, Tsuyoshi Tamaru, Naoki Fukuda, Hidekazu Goto, Isamu Asano, Hideo Aoki, Keizo Kawakita, Satoru Yamada, Katsuhiko Tanaka, Hiroshi Sakuma, Masayoshi Hirasawa
  • Patent number: 6639263
    Abstract: It is an object of the present invention to provide a high-reliability semiconductor device having a storage capacitor and wiring using copper for a main conductive film. Under the above object, the present invention provides a semiconductor device comprising: a semiconductor substrate; a storage capacitor formed on the main surface side of the semiconductor substrate and being a first electrode and a second electrode arranged so as to put a capacitor insulation film; a wiring conductor formed on the main surface side of the semiconductor substrate and including the copper (Cu) element; and a first film formed on the surface of the wiring conductor; wherein a material configuring the first film and a material configuring the first electrode and/or the second electrode include the same element.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: October 28, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Yukihiro Kumagai, Hideo Miura, Hiroyuki Ohta, Tomio Iwasaki, Isamu Asano
  • Patent number: 6638811
    Abstract: In a DRAM having a capacitor-over-bitline structure in which the capacitive insulating film of an information storing capacitive element C is formed of a high dielectric material such as Ta2O5 (tantalum oxide) film 46, the portions of bit lines BL and first-layer interconnect lines 23 to 26 of a peripheral circuit which are in contact with at least an underlying silicon oxide film 28 are formed of a W film, the bit lines BL and the interconnect lines 23 to 26 being arranged below the information storing capacitive element C, whereby the adhesion at the interface between the bit lines BL and the interconnect lines 23 to 26 and the silicon oxide film is improved in terms of high-temperature heat treatment to be performed when the capacitive insulating film is being formed.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: October 28, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Masayoshi Saito, Yoshitaka Nakamura, Hidekazu Goto, Keizo Kawakita, Satoru Yamada, Toshihiro Sekiguchi, Isamu Asano, Yoshitaka Tadaki, Takuya Fukuda, Masayuki Suzuki, Tsuyoshi Tamaru, Naoki Fukuda, Hideo Aoki, Masayoshi Hirasawa
  • Publication number: 20030189255
    Abstract: Herein disclosed is a semiconductor integrated circuit device fabricating process for forming MISFETs over the principal surface in those active regions of a substrate, which are surrounded by inactive regions formed of an element separating insulating film and channel stopper regions, comprising: the step of for forming a first mask by a non-oxidizable mask and an etching mask sequentially over the principal surface of the active regions of the substrate; the step of forming a second mask on and in self-alignment with the side walls of the first mask by a non-oxidizable mask thinner than the non-oxidizable mask of the first mask and an etching mask respectively; the step of etching the principal surface of the inactive regions of the substrate by using the first mask and the second mask; the step of forming the element separating insulating film over the principal surface of the inactive regions of the substrate by an oxidization using the first mask and the second mask; and the step of forming the channel s
    Type: Application
    Filed: March 3, 2003
    Publication date: October 9, 2003
    Inventors: Jun Sugiura, Osamu Tsuchiya, Makoto Ogasawara, Fumio Ootsuka, Kazuyoshi Torii, Isamu Asano, Nobuo Owada, Mitsuaki Horiuchi, Tsuyoshi Tamaru, Hideo Aoki, Nobuhiro Otsuka, Seiichirou Shirai, Masakazu Sagawa, Yoshihiro Ikeda, Masatoshi Tsuneoka, Toru Kaga, Tomotsugu Shimmyo, Hidetsugu Ogishi, Osamu Kasahara, Hiromichi Enami, Atsushi Wakahara, Hiroyuki Akimori, Sinichi Suzuki, Keisuke Funatsu, Yoshinao Kawasaki, Tunehiko Tubone, Takayoshi Kogano, Ken Tsugane
  • Patent number: 6624513
    Abstract: A highly reliable semiconductor device having a multilayer structure including an insulating film, an adjacent conductive film, and a main conductive film in which adhesive fractures, voids and disconnections are unlikely to occur. Regarding main constituent elements of the adjacent conductive film and the main conductive film, lattice mismatching is made small, the melting point the adjacent conductive film is set to be not less than 1.4 times that of the main constituent element of the main conductive film, the adjacent conductive film contains at least one different kind of element, the difference between the atomic radius of an added element and that the atomic radius the adjacent conductive film is set to be not more than 10%, and/or bond energy between the added element and silicon (Si) is not less than 1.9 times that of the main constituent element of the adjacent conductive film and silicon (Si).
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: September 23, 2003
    Assignee: Hitachi, ltd.
    Inventors: Tomio Iwasaki, Hideo Miura, Isamu Asano
  • Publication number: 20030173614
    Abstract: Disclosed are a semiconductor integrated circuit device and a method of manufacturing the same capable of improving the characteristics of the semiconductor integrated circuit device by reducing a leakage current of a capacitor used in a DRAM memory cell. A data storage capacitor connected to a data transfer MISFET in a memory cell forming area via plugs is formed in the following manner. That is, a lower electrode composed of an Ru film is formed in a hole in a silicon oxide film, and then, a tantalum oxide film is deposited on the lower electrode. Thereafter, a first thermal treatment in an oxidizing atmosphere is performed to the film at a temperature sufficient to repair an oxygen defect and having no influence on the materials below the tantalum oxide film. Further, a second thermal treatment in an inactive atmosphere is performed at a temperature at which the tantalum oxide film is not completely crystallized (650° C.) and higher than that applied in the later process.
    Type: Application
    Filed: January 28, 2003
    Publication date: September 18, 2003
    Applicant: Hitachi, Ltd.
    Inventors: Yoshitaka Nakamura, Isamu Asano, Shinpei Iijima, Masahiko Hiratani, Hiroshi Sakuma
  • Patent number: 6621110
    Abstract: A DRAM of an open bit line structure has a cell area smaller than that of a DRAM of a folded bit line structure and is susceptible to noise. A conventional DRAM of an open bit line structure has a large bit line capacitance and is susceptible to noise or has a large cell area. There has been no DRAM of an open bit line structure having a small bit line capacitance, unsusceptible to noise and having a small cell area. The present invention forms capacitor lower electrode plug holes not aligned with bit lines to reduce bit line capacitance. Bit lines are formed in a small width, capacitor lower electrode plugs are dislocated from positions corresponding to the centers of the bit lines in directions away from the bit lines and the contacts are formed in a reduced diameter to avoid increasing the cell area. Thus a semiconductor storage device of an open bit line structure resistant to noise and having a small cell area is provided.
    Type: Grant
    Filed: June 13, 2000
    Date of Patent: September 16, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Hideyuki Matsuoka, Satoru Yamada, Isamu Asano, Ryo Nagai, Tomonori Sekiguchi, Riichiro Takemura
  • Patent number: 6605530
    Abstract: The semiconductor device is formed according to the following steps. A TiN film 71 and a W film 72 are deposited on a silicon oxide film 64 including the inside of a via-hole 66 by the CVD method and thereafter, the W film 72 and TiN film 71 on the silicon oxide film 64 are etched back to leave only the inside of the via-hole 66 and form a plug 73. Then, a TiN film 74, Al-alloy film 75, and Ti film 76 are deposited on the silicon oxide film 64 including the surface of the plug 73 by the sputtering method and thereafter, the Ti film 76, Al-alloy film 75, and TiN film 74 are patterned to form second-layer wirings 77 and 78.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: August 12, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Yoshitaka Nakamura, Tsuyoshi Tamaru, Naoki Fukuda, Hidekazu Goto, Isamu Asano, Hideo Aoki, Keizo Kawakita, Satoru Yamada, Katsuhiko Tanaka, Hiroshi Sakuma, Masayoshi Hirasawa