Patents by Inventor J. Kenneth Salisbury

J. Kenneth Salisbury has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8489235
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: July 16, 2013
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, Jr., Michael J. Tierney
  • Publication number: 20130039732
    Abstract: According to one exemplary embodiment, a manipulator device includes a base, first and second linear slides, a drive link, a drive member, a driven member and an end effector. The elements of the manipulator device cooperate to constrain the end effector to rotate about a remote center of motion that is displaced from a proximal center of motion as the drive link moves a carriage of the second linear slide along an arcuate path.
    Type: Application
    Filed: August 10, 2012
    Publication date: February 14, 2013
    Inventors: Reuben D. Brewer, J. Kenneth Salisbury, JR.
  • Patent number: 8343141
    Abstract: An articulated surgical instrument for enhancing the performance of minimally invasive surgical procedures. The instrument has a high degree of dexterity, low friction, low inertia and good force reflection. A unique cable and pulley drive system operates to reduce friction and enhance force reflection. A unique wrist mechanism operates to enhance surgical dexterity compared to standard laparoscopic instruments. The system is optimized to reduce the number of actuators required and thus produce a fully functional articulated surgical instrument of minimum size.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: January 1, 2013
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Akhil J. Madhani, J. Kenneth Salisbury
  • Patent number: 8316861
    Abstract: A magnetic force control system for guiding a medical instrument within a body includes: a controlled magnet coupled to the medical instrument; a controller magnet that exerts a magnetic force on the controlled magnet; a magnetically permeable shield, placed between the controlled magnet and the controller magnet, that selectively modulates the magnetic force by rerouting magnetic field lines; and a control system. A method for guiding a medical instrument within a body with magnetic force control includes: providing a controlled magnet coupled to the medical instrument, inserting the controlled magnet and medical instrument into the body, providing a controller magnet outside the body, placing a magnetically permeable shield between the controlled magnet and the controller magnet, applying magnetic force, and selectively modulating the magnetic force with the shield to vary at least one of amplitude and orientation of the magnetic force, thereby guiding the controlled magnet within the body.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: November 27, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Reuben Brewer, J. Kenneth Salisbury, Jr., Kevin E. Loewke, David B Camarillo
  • Publication number: 20120143212
    Abstract: A robotic apparatus has eight actuators (M0-M7) and a linkage (LINK 0-LINK 5) that actuates an end effector. Three serial macro freedoms have large ranges of motion and inertias. Four serial micro freedoms have small ranges of motion and inertias. Translation of the end effector in an y direction is actuated by at least one micro joint and at least one macro joint. The apparatus can be part of a master and slave combination, providing force feedback without any explicit force sensors. The slave is controlled with an Inverse Jacobian controller, and the mater with a Jacobian Transpose controller. A slave having more degrees of freedom (DOFs) than the master can be controlled. A removable effector unit actuates its DOFs with cables. Beating heart surgery can be accomplished by commanding the slave to move with a beating heart and cancelling out any such motion in the motions perceived by the master.
    Type: Application
    Filed: February 2, 2012
    Publication date: June 7, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Akhil Jiten MADHANI, J. Kenneth SALISBURY, JR., Gunter D. NIEMEYER
  • Publication number: 20120130399
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 24, 2012
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, JR., Michael J. Tierney
  • Patent number: 8123740
    Abstract: A robotic apparatus has eight actuators (M0-M7) and a linkage (LINK 0-LINK 5) that actuates an end effector. Three serial macro freedoms have large ranges of motion and inertias. Four serial micro freedoms have small ranges of motion and inertias. Translation of the end effector in any direction is actuated by at least one micro joint and at least one macro joint. The apparatus can be part of a master and slave combination, providing force feedback without any explicit force sensors. The slave is controlled with an Inverse Jacobian controller, and the mater with a Jacobian Transpose controller. A slave having more degrees of freedom (DOFs) than the master can be controlled. A removable effector unit actuates its DOFs with cables. Beating heart surgery can be accomplished by commanding the slave to move with a beating heart and cancelling out any such motion in the motions perceived by the master.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: February 28, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Akhil J. Madhani, J. Kenneth Salisbury, Jr., Gunter D. Niemeyer
  • Publication number: 20110137322
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Application
    Filed: December 3, 2010
    Publication date: June 9, 2011
    Applicant: Intuitive Surgical Operations
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, JR., Michael J. Tierney
  • Publication number: 20110102434
    Abstract: A method for generating a haptic interactive representation including the steps of defining a haptic interaction space and building a hierarchical construct, for use within the haptic interaction space, using a plurality of underlying constructs. In one embodiment the method includes determining the forces to be applied to a user by generating a haptic interactive, sensing a position of a user in real space, determining a haptic interface location in the haptic interaction space in response to the position of the user in real space and determining whether the virtual object collides with the haptic interface location. The invention also relates to a method for interacting with a haptic interactive representation.
    Type: Application
    Filed: August 27, 2010
    Publication date: May 5, 2011
    Applicant: SENSABLE TECHNOLOGIES, INC.
    Inventors: Christopher Tarr, J. Kenneth Salisbury, JR., Thomas Harold Massie, Walter A. Aviles
  • Publication number: 20110015647
    Abstract: A positioning system having a base, a manually movable end effector and a first joint interposed between the base and the end effector is disclosed. The first joint may comprise a proximal portion and a distal portion coupled together by magnetic attraction and configured to be intermittently separated by a pressurized gas cushion. The first joint may be configured to be changeable between a movable state and a fixed state. In the movable state, the proximal and distal portions are separated by the pressurized gas cushion and are movable relative to each other. In the fixed state, the proximal and distal portions contact each other and relative movement is thereby impeded. Methods of precisely positioning an end effector may include providing a device having a base, a first joint located distally from the base, and an end effector located distally from the first joint.
    Type: Application
    Filed: July 15, 2009
    Publication date: January 20, 2011
    Inventors: J. Kenneth Salisbury, JR., Joan Savall
  • Patent number: 7865266
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: January 4, 2011
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, Jr., Michael J. Tierney
  • Publication number: 20100292708
    Abstract: An articulated surgical instrument for enhancing the performance of minimally invasive surgical procedures. The instrument has a high degree of dexterity, low friction, low inertia and good force reflection. A unique cable and pulley drive system operates to reduce friction and enhance force reflection. A unique wrist mechanism operates to enhance surgical dexterity compared to standard laparoscopic instruments. The system is optimized to reduce the number of actuators required and thus produce a fully functional articulated surgical instrument of minimum size.
    Type: Application
    Filed: July 9, 2010
    Publication date: November 18, 2010
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Akhil J. Madhani, J. Kenneth Salisbury
  • Publication number: 20100256815
    Abstract: A haptic device for telerobotic surgery, including a base; a linkage system having first and second linkage members coupled to the base; a motor that provides a motor force; a transmission including first and second driving pulleys arranged such that their faces form an angle and their axes form a plane, first and second idler pulleys offset from the plane and arranged between the first and second driving pulleys such that their axes divide the angle between the first and second driving pulleys, and a cable that traverses the first and second driving pulleys and the set of idler pulleys and transfers the motor force to the linkage system; an end effector coupled to distal ends of the first and second linkage members and maneuverable relative to the base; and a controller that modulates the motor force to simulate a body part at a point portion of the end effector.
    Type: Application
    Filed: March 11, 2010
    Publication date: October 7, 2010
    Inventors: Curt Salisbury, J. Kenneth Salisbury, JR.
  • Patent number: 7806891
    Abstract: The invention provides robotic surgical systems which allow selectable independent repositioning of an input handle of a master controller and/or a surgical end effector without corresponding movement of the other. In some embodiments, independent repositioning is limited to translational degrees of freedom. In other embodiments, the system provides an input device adjacent a manipulator supporting the surgical instrument so that an assistant can reposition the instrument at the patient's side.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: October 5, 2010
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: William C. Nowlin, Gary S. Guthart, J. Kenneth Salisbury, Jr., Gunter D. Niemeyer
  • Publication number: 20100243344
    Abstract: Systems and methods related to construction, configuration, and utilization of humanoid robotic systems and aspects thereof are described. A system may include a mobile base, a spine structure, a body structure, and at least one robotic arm, each of which is movably configured to have significant human-scale capabilities in prescribed environments. The one or more robotic arms may be rotatably coupled to the body structure, which may be mechanically associated with the mobile base and spine such that it may be deflectably elevated and rolled relative to the base simultaneously and independently. Aspects of the one or more arms may be counterbalanced with one or more spring-based counterbalancing mechanisms which facilitate backdriveability and payload features.
    Type: Application
    Filed: November 25, 2009
    Publication date: September 30, 2010
    Applicant: Board of Trustees of Leland Stanford Junior University
    Inventors: Keenan A. Wyrobek, Eric Berger, J. Kenneth Salisbury, JR.
  • Patent number: 7800609
    Abstract: A method for generating a haptic interactive representation including the steps of defining a haptic interaction space and building a hierarchical construct, for use within the haptic interaction space, using a plurality of underlying constructs. In one embodiment the method includes determining the forces to be applied to a user by generating a haptic interactive, sensing a position of a user in real space, determining a haptic interface location in the haptic interaction space in response to the position of the user in real space and determining whether the virtual object collides with the haptic interface location. The invention also relates to a method for interacting with a haptic interactive representation.
    Type: Grant
    Filed: January 2, 2008
    Date of Patent: September 21, 2010
    Assignee: SensAble Technologies, Inc.
    Inventors: Christopher Tarr, J. Kenneth Salisbury, Jr., Thomas Harold Massie, Walter A. Aviles
  • Patent number: 7780651
    Abstract: An articulated surgical instrument for enhancing the performance of minimally invasive surgical procedures. The instrument has a high degree of dexterity, low friction, low inertia and good force reflection. A unique cable and pulley drive system operates to reduce friction and enhance force reflection. A unique wrist mechanism operates to enhance surgical dexterity compared to standard laparoscopic instruments. The system is optimized to reduce the number of actuators required and thus produce a fully functional articulated surgical instrument of minimum size.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: August 24, 2010
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Akhil J. Madhani, J. Kenneth Salisbury
  • Publication number: 20100149183
    Abstract: Mosaicing methods and devices are implementing in a variety of manners. One such method is implemented for generation of a continuous image representation of an area from multiple images consecutively received from an image sensor. A location of a currently received image is indicated relative to the image sensor. A position of a currently received image relative to a set of previously received images is indicated with reference to the indicated location. The currently received image is compared to the set of previously received images as a function of the indicated position. Responsive to the comparison, adjustment information is indicated relative to the indicated position. The currently received image is merged with the set of previously received images to generate data representing a new set of images.
    Type: Application
    Filed: December 14, 2007
    Publication date: June 17, 2010
    Inventors: Kevin E. Loewke, David B. Camarillo, J. Kenneth Salisbury, JR., Sebastian Thrun
  • Publication number: 20100105984
    Abstract: A magnetic force control system for guiding a medical instrument within a body includes: a controlled magnet coupled to the medical instrument; a controller magnet that exerts a magnetic force on the controlled magnet; a magnetically permeable shield, placed between the controlled magnet and the controller magnet, that selectively modulates the magnetic force by rerouting magnetic field lines; and a control system. A method for guiding a medical instrument within a body with magnetic force control includes: providing a controlled magnet coupled to the medical instrument, inserting the controlled magnet and medical instrument into the body, providing a controller magnet outside the body, placing a magnetically permeable shield between the controlled magnet and the controller magnet, applying magnetic force, and selectively modulating the magnetic force with the shield to vary at least one of amplitude and orientation of the magnetic force, thereby guiding the controlled magnet within the body.
    Type: Application
    Filed: October 21, 2009
    Publication date: April 29, 2010
    Inventors: Reuben Brewer, J. Kenneth Salisbury, JR., Kevin E. Loewke, David B. Camarillo
  • Publication number: 20090107281
    Abstract: An actuation system for a multi-segmented robot linkage is provided. The system includes (i) a gravity counter balancing mechanism for the multi-segmented robot linkage and a payload in contact with the multi-segmented robot linkage and (ii) a plurality of actuators acting on the joints of the multi-segmented robot linkage, whereby the actuators are high-bandwidth back-drivable actuators.
    Type: Application
    Filed: May 19, 2008
    Publication date: April 30, 2009
    Inventors: Keenan A. Wyrobek, J. Kenneth Salisbury, JR., Eric Berger