Patents by Inventor J. Kenneth Salisbury

J. Kenneth Salisbury has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6659939
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Grant
    Filed: November 3, 1999
    Date of Patent: December 9, 2003
    Assignee: Intuitive Surgical, Inc.
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, Michael Tierney
  • Publication number: 20030220541
    Abstract: A method of performing a surgical procedure on a patient is provided. The method typically comprises positioning a surgical work station of a robotically controlled surgical system and a patient on which a surgical procedure is to be performed in close proximity relative to each other, directing a field of view of an image capture device of the surgical work station at a surgical site on the patient, at which site the surgical procedure is to be performed, and introducing at least one robotically controlled surgical instrument on the surgical work station to the surgical site so that an end effector of the surgical instrument is within the field of view of the image capture device. The method typically further comprises displaying an image of the surgical site and the end effector on a display area of an image display at an operator control station of the surgical system.
    Type: Application
    Filed: December 5, 2002
    Publication date: November 27, 2003
    Applicant: INTUITIVE SURGICAL, INC.
    Inventors: J. Kenneth Salisbury, Gunter D. Niemeyer, Robert G. Younge, Gary S. Guthart, David S. Mintz, Thomas G. Cooper
  • Publication number: 20030216715
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Application
    Filed: April 24, 2003
    Publication date: November 20, 2003
    Applicant: INTUITIVE SURGICAL, INC.
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, Michael J. Tierney
  • Patent number: 6587750
    Abstract: An input device for robotic surgery mechanically transmits a grip signal across a first joint coupling a handle to a linkage supporting the handle. The handle is removable and replaceable, allows unlimited rotation about the joint, and may optionally include a touch sensor to inhibit movement of a surgical end effector when the hand of the surgeon is not in contact with the handle.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: July 1, 2003
    Assignee: Intuitive Surgical, Inc.
    Inventors: Craig Richard Gerbi, Eugene F. Duval, Don Minami, Bob Hager, J. Kenneth Salisbury, Akhil Madhani, John Stern, Gary S. Guthart
  • Publication number: 20030088389
    Abstract: Long Elements Method (LEM) for real time physically based dynamic simulation of deformable objects. The LEM is based on a new meshing strategy using long elements whose forms can be straight or arbitrary. The LEM implements a static solution for elastic global deformations of objects filled with fluid based on the Pascal's principle and volume conservation. The volumes are discretised in long elements, defining meshes one order of magnitude smaller than meshes based on tetrahedral or cubic elements. The LEM further combines static and dynamic approaches to simulate the same deformable medium, allowing modeling a three-dimensional internal state at any point inside the deforming medium from a reduced number of explicitly updated elements. Complex elastic and plastic deformations can be simulated in real time with less computational effort. The LEM is particularly useful in real time virtual interactions, soft tissue modeling, and graphic and haptic rendering.
    Type: Application
    Filed: October 29, 2001
    Publication date: May 8, 2003
    Inventors: Remis Balaniuk, Ivan F. Costa, J. Kenneth Salisbury
  • Publication number: 20030060927
    Abstract: An input device for robotic surgery mechanically transmits a grip signal across a first joint coupling a handle to a linkage supporting the handle. The handle is removable and replaceable, allows unlimited rotation about the joint, and may optionally include a touch sensor to inhibit movement of a surgical end effector when the hand of the surgeon is not in contact with the handle.
    Type: Application
    Filed: September 25, 2001
    Publication date: March 27, 2003
    Applicant: INTUITIVE SURGICAL, INC.
    Inventors: Craig Richard Gerbi, Eugene F. Duval, Don Minami, Robert F. Hagen, J. Kenneth Salisbury, Akhil Madhani, John Stern, Gary S. Guthart
  • Publication number: 20030034994
    Abstract: The invention is an apparatus for physically exchanging a force with a user in an environment local to the user. A connection element connects to a user's body member and a linkage between the connection element and ground. The linkage includes means for powering at least three independent freedoms of the connection element relative to ground and means for maintaining at least one independent freedom of the connection element relative to ground free of power. Up to three independent freedoms of the connection element may be maintained free of power, and up to five independent freedoms may be powered. Other aspects of the invention include a two actuator counter-balance for controlling a point on a link. The invention also includes apparatus for establishing a virtual, switch, which presents to the user the force and displacement relationship of a spring switch.
    Type: Application
    Filed: November 16, 2001
    Publication date: February 20, 2003
    Inventors: Thomas H. Massie, J. Kenneth Salisbury
  • Patent number: 6522906
    Abstract: Systems and methods for performing robotically-assisted surgical procedures on a patient enable an image display device to provide an operator with auxiliary information related to the surgical procedure, in addition to providing an image of the surgical site itself. The systems and methods allow an operator to selectively access and reference auxiliary information on the image display device during the performance of a surgical procedure.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: February 18, 2003
    Assignee: Intuitive Surgical, Inc.
    Inventors: J. Kenneth Salisbury, Jr., Gunter D. Niemeyer, Robert G. Younge, Gary S. Guthart, David S. Mintz, Thomas G. Cooper
  • Publication number: 20030023346
    Abstract: An input device for robotic surgical techniques and other applications has a handle supported by a linkage with a redundant degree of freedom, the joints being movable with at least one more degree of freedom than the handle. At least one joint of the linkage is actively driven to prevent the linkage from approaching singularities of the joint system, motion limits of the joints, or the like, and also to drive the linkage toward a freely articulatable configuration. A robotic master controller can include an arm assembly supporting a gimbal having a redundant linkage, with the arm primarily positioning the gimbal in a three dimensional controller workspace and the gimbal coupling the arm to the handle with four rotational degrees of freedom. One or more additional degrees of freedom may also be provided for actuation of the handle, for example, to close the jaws of a surgical grasper.
    Type: Application
    Filed: April 11, 2002
    Publication date: January 30, 2003
    Applicant: INTUITIVE SURGICAL, INC.
    Inventors: J. Kenneth Salisbury, Akhil J. Madhani, Gary S. Guthart, Gunter D. Niemeyer, Eugene F. Duval
  • Publication number: 20030013949
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Application
    Filed: November 3, 1999
    Publication date: January 16, 2003
    Inventors: FREDERIC H. MOLL, DAVID J. ROSA, ANDRIS D. RAMANS, STEVEN J. BLUMENKRANZ, GARY S. GUTHART, GUNTER D. NIEMEYER, WILLIAM C. NOWLIN, J. KENNETH SALISBURY, MICHAEL J. TIERNEY
  • Patent number: 6459926
    Abstract: The invention provides robotic surgical systems which allow selectable independent repositioning of an input handle of a master controller and/or a surgical end effector without corresponding movement of the other. In some embodiments, independent repositioning is limited to translational degrees of freedom. In other embodiments, the system provides an input device adjacent a manipulator supporting the surgical instrument so that an assistant can reposition the instrument at the patient's side.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: October 1, 2002
    Assignee: Intuitive Surgical, Inc.
    Inventors: William C. Nowlin, Gary S. Guthart, J. Kenneth Salisbury, Jr., Gunter D. Niemeyer
  • Publication number: 20020128552
    Abstract: The invention provides robotic surgical systems which allow selectable independent repositioning of an input handle of a master controller and/or a surgical end effector without corresponding movement of the other. In some embodiments, independent repositioning is limited to translational degrees of freedom. In other embodiments, the system provides an input device adjacent a manipulator supporting the surgical instrument so that an assistant can reposition the instrument at the patient's side.
    Type: Application
    Filed: January 15, 2002
    Publication date: September 12, 2002
    Applicant: Intuitive Surgical, Inc.
    Inventors: William C. Nowlin, Gary S. Guthart, J. Kenneth Salisbury, Gunter D. Niemeyer
  • Publication number: 20020120363
    Abstract: The invention provides an input device for robotics surgical techniques and other applications. The input device has a handle supported by a linkage having joints with a redundant degree of freedom, with the joints being movable with at least one more degree of freedom than the handle. At least one joint of the linkage is actively driven to prevent the linkage from approaching singularities of the joint system, motion limits of the joints, or the like, and also to drive the linkage toward a freely articulative configuration. In one embodiment, a robotic master controller includes an arm assembly supporting a gimbal having such a redundant linkage, with the arm primarily positioning the gimbal in a three dimensional controller workspace and the gimbal coupling the arm to the handle with four rotational degrees of freedom. One or more additional degrees of freedom may also be provided for actuation of the handle, for example, to close the jaws of a surgical grasper.
    Type: Application
    Filed: September 17, 1999
    Publication date: August 29, 2002
    Inventors: J. KENNETH SALISBURY, AKHIL J. MADHANI, GARY S. GUTHART, GUNTER NIEMEYER, EUGENE F. DUVAL
  • Publication number: 20020103476
    Abstract: An articulated surgical instrument for enhancing the performance of minimally invasive surgical procedures. The instrument has a high degree of dexterity, low friction, low inertia and good force reflection. A unique cable and pulley drive system operates to reduce friction and enhance force reflection. A unique wrist mechanism operates to enhance surgical dexterity compared to standard laparoscopic instruments. The system is optimized to reduce the number of actuators required and thus produce a fully functional articulated surgical instrument of minimum size.
    Type: Application
    Filed: February 15, 2002
    Publication date: August 1, 2002
    Applicant: Intuitive Surgical, Inc.
    Inventors: Akhil J. Madhani, J. Kenneth Salisbury
  • Publication number: 20020082612
    Abstract: Improved robotic surgical systems, devices, and methods often include a first assembly with a surgical end effector supported and manipulated relative to a first base by a first robotic linkage, while a second surgical end effector manipulated and supported relative to a second, independent base by a second robotic linkage. One or more of these robotic assemblies may be moved relative to the other. To coordinate the end effector movements with those of input devices being manipulated by a surgeon relative to a display of a surgical worksite, the processor deriving the commands for movement of the robotic linkages may make use of a signal indicating a relative orientation of the bases of the robotic arm assemblies. Surprisingly, the robotic arm assemblies may not transmit signals to the processor indicating a relative translational position of the bases.
    Type: Application
    Filed: October 5, 2001
    Publication date: June 27, 2002
    Applicant: Intuitive Surgical, Inc.
    Inventors: Frederic H. Moll, David J. Rose, Andris D. Ramans, Stephen J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, Michael J. Tierney
  • Patent number: 6371952
    Abstract: An articulated surgical instrument for enhancing the performance of minimally invasive surgical procedures. The instrument has a high degree of dexterity, low friction, low inertia and good force reflection. A unique cable and pulley drive system operates to reduce friction and enhance force reflection. A unique wrist mechanism operates to enhance surgical dexterity compared to standard laparoscopic instruments. The system is optimized to reduce the number of actuators required and thus produce a fully functional articulated surgical instrument of minimum size.
    Type: Grant
    Filed: June 28, 1999
    Date of Patent: April 16, 2002
    Assignee: Intuitive Surgical, Inc.
    Inventors: Akhil J. Madhani, J. Kenneth Salisbury
  • Patent number: 6369834
    Abstract: A method and apparatus for determining forces to be applied to a user through a haptic interface. The method includes the steps of generating a representation of an object in graphic space, sensing the position of the user in real space and calculating a force to be applied to a user in response to the user's haptic interface and the user's fiducial object. The user's fiducial object represents the location in graphic space at which the user's haptic interface would be located if the haptic interface could not penetrate the surfaces of virtual objects. In one embodiment, the method calculates a stiffness force to be applied to the user. In other embodiments, the method calculates damping and friction forces to be applied to the user. In one embodiment the step of generating a representation of an object in graphic space includes defining the object as a mesh of planar surfaces and associating surface condition values to each of the nodes defining the planar surfaces.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: April 9, 2002
    Assignee: Massachusetts Institute of Technology
    Inventors: Craig B. Zilles, J. Kenneth Salisbury, Jr., Thomas H. Massie, David Lawrence Brock, Mandayam A. Srinivasan, Hugh B. Morgenbesser
  • Patent number: 6111577
    Abstract: A method and apparatus for determining forces to be applied to a user through a haptic interface. The method includes the steps of generating a representation of an object in graphic space, sensing the position of the user in real space and calculating a force to be applied to a user in response to the user's haptic interface and the user's fiducial object. The user's fiducial object represents the location in graphic space at which the user's haptic interface would be located if the haptic interface could not penetrate the surfaces of virtual objects. In one embodiment, the method calculates a stiffness force to be applied to the user. In other embodiments, the method calculates damping and friction forces to be applied to the user. In one embodiment the step of generating a representation of an object in graphic space includes defining the object as a mesh of planar surfaces and associating surface condition values to each of the nodes defining the planar surfaces.
    Type: Grant
    Filed: April 4, 1996
    Date of Patent: August 29, 2000
    Assignee: Massachusetts Institute of Technology
    Inventors: Craig B. Zilles, J. Kenneth Salisbury, Jr., Thomas H. Massie, David Lawrence Brock, Mandayam A. Srinivasan, Hugh B. Morgenbesser
  • Patent number: 6084587
    Abstract: A method for generating a haptic interactive representation including the steps of defining a haptic interaction space and building a hierarchical construct, for use within the haptic interaction space, using a plurality of underlying constructs. In one embodiment the method includes determining the forces to be applied to a user by generating a haptic interactive, sensing a position of a user in real space, determining a haptic interface location in the haptic interaction space in response to the position of the user in real space and determining whether the virtual object collides with the haptic interface location. The invention also relates to a method for interacting with a haptic interactive representation.
    Type: Grant
    Filed: August 2, 1996
    Date of Patent: July 4, 2000
    Assignee: SensAble Technologies, Inc.
    Inventors: Christopher Tarr, J. Kenneth Salisbury, Jr., Thomas Harold Massie, Walter A. Aviles
  • Patent number: 5976122
    Abstract: An articulated surgical instrument for enhancing the performance of minimally invasive surgical procedures. The instrument has a high degree of dexterity, low friction, low inertia and good force reflection. A unique cable and pulley drive system operates to reduce friction and enhance force reflection. A unique wrist mechanism operates to enhance surgical dexterity compared to standard laparoscopic instruments. The system is optimized to reduce the number of actuators required and thus produce a fully functional articulated surgical instrument of minimum size.
    Type: Grant
    Filed: February 25, 1998
    Date of Patent: November 2, 1999
    Assignee: Integrated Surgical Systems, Inc.
    Inventors: Akhil J. Madhani, J. Kenneth Salisbury