Patents by Inventor Jaan Noolandi

Jaan Noolandi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100280147
    Abstract: Ophthalmic devices are provided based on an interpenetrating (IPN) double network hydrogel of a first network physically entangled with a second network. The first network is an entangled network of self-linked hydrophilic telechelic macromonomers and hydrophobic moieties. The second network is a hydrophilic network of crosslinked polyacrylic acid. The IPN double network hydrogels including the hydrophobic moieties are characterized by being optically clear and having refractive indices above 1.34.
    Type: Application
    Filed: May 19, 2010
    Publication date: November 4, 2010
    Inventors: Laura Hartmann, Curtis W. Frank, Jaan Noolandi, Donald T. H. Tan, Roger W. Beuerman
  • Publication number: 20100147687
    Abstract: Various particle transport systems and components for use in such systems are described. The systems utilize one or more traveling wave grids to selectively transport, distribute, separate, or mix different populations of particles. Numerous systems configured for use in two dimensional and three dimensional particle transport are described.
    Type: Application
    Filed: February 25, 2010
    Publication date: June 17, 2010
    Applicant: XEROX CORPORATION
    Inventors: Armin R. Völkel, David Biegelsen, Philip D. Floyd, Greg Anderson, Fred Endicott, Eric Peeters, Jaan Noolandi, Karen A. Moffat, Peter M. Kazmaier, Maria McDougall, Daniel G. Bobrow
  • Publication number: 20100147691
    Abstract: Various particle transport systems and components for use in such systems are described. The systems utilize one or more traveling wave grids to selectively transport, distribute, separate, or mix different populations of particles. Numerous systems configured for use in two dimensional and three dimensional particle transport are described.
    Type: Application
    Filed: February 25, 2010
    Publication date: June 17, 2010
    Applicant: XEROX CORPORATION
    Inventors: Armin R. Völkel, David Biegelsen, Philip D. Floyd, Greg Anderson, Fred Endicott, Eric Peeters, Jaan Noolandi, Karen A. Moffat, Peter M. Kazmaier, Maria McDougall, Daniel G. Bobrow
  • Publication number: 20100147686
    Abstract: Various particle transport systems and components for use in such systems are described. The systems utilize one or more traveling wave grids to selectively transport, distribute, separate, or mix different populations of particles. Numerous systems configured for use in two dimensional and three dimensional particle transport are described.
    Type: Application
    Filed: February 25, 2010
    Publication date: June 17, 2010
    Applicant: XEROX CORPORATION
    Inventors: Armin R. Völkel, David Biegelsen, Philip D. Floyd, Greg Anderson, Fred Endicott, Eric Peeters, Jaan Noolandi, Karen A. Moffat, Peter M. Kazmaier, Maria McDougall, Daniel G. Bobrow
  • Patent number: 7695602
    Abstract: Various particle transport systems and components for use in such systems are described. The systems utilize one or more traveling wave grids to selectively transport, distribute, separate, or mix different populations of particles. Numerous systems configured for use in two dimensional and three dimensional particle transport are described.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: April 13, 2010
    Assignee: Xerox Corporation
    Inventors: Armin R. Völkel, David Biegelsen, Philip D. Floyd, Greg Anderson, Fred Endicott, Eric Peeters, Jaan Noolandi, Karen A. Moffat, Peter M. Kazmaier, Maria McDougall, Daniel G. Bobrow
  • Publication number: 20090314861
    Abstract: Fluid ejection using multiple voltage pulses and removable well modules is provided. Ejection of an electrically conductive fluid is accomplished by the application of two or more high voltage pulses. The high voltage pulses are applied across a conducting nozzle for transporting the fluid and a grounded conducting ring positioned below the nozzle. Ejected fluid droplets fall through the center of the conducting ring and onto a substrate. The presence and approximate size of the ejected droplets can be sensed and used for feedback for the high voltage pulses. The conductive fluids are stored in well modules that are not permanently attached to a well plate. Each removable well module includes a conducting nozzle and can include valves and a memory chip. Control circuits are also provided to independently control the high voltage pulses applied to the individual well modules.
    Type: Application
    Filed: June 18, 2008
    Publication date: December 24, 2009
    Inventor: Jaan Noolandi
  • Publication number: 20090117166
    Abstract: A bio-mimetic or bio-implantable material based on a sequential process of coupling biomolecule layers to a polymer layer is provided. In general, the material could be based on two or more biomolecule layers starting with one of the layers covalently linked to the polymer layer via cross-linkers and the other layers sequentially and covalently linked using cross-linkers to the previously added layer. The polymer layer could be a hydrogel or an interpenetrating polymer network hydrogel. The first layer of biomolecules could be a collagen type, fibronectin, laminin, extracellular matrix protein, or any combinations thereof. The second layer of biomolecules typically is a growth factor, protein or stimulant. The cross-linkers are either water soluble or insoluble bifunctional cross-linkers or azide-active-ester crosslinkers. The material and process as taught in this invention are useful in the field of tissue engineering and wound healing.
    Type: Application
    Filed: August 15, 2008
    Publication date: May 7, 2009
    Inventors: David Myung, Stayce Beck, Jaan Noolandi, Christopher N. Ta, Jennifer R. Cochran, Curtis W. Frank
  • Publication number: 20080257811
    Abstract: A method of using electrokinetics for separating particles in a buffer solution is provided, where a chromatographic column is provided having a non-uniform internal longitudinal cross-section. At least one main inlet for inputting solution and at least one main outlet for outputting solution are provided. At least one sample inlet and at least one sample outlet are provided. The particle is introduced to the column from the sample inlet and fractionated samples are eluted from the sample outlet, where quality control and further analysis are enabled. An electric field is applied to the solution in the column to generate a charged double layer at a solid-liquid interface within the column. The electric filed moves ions within the double layer, and a non-uniform velocity profile is induced to the buffer solution. The moving ions carry the particles along the column and the particles are separated according to size or charge.
    Type: Application
    Filed: April 7, 2008
    Publication date: October 23, 2008
    Inventors: Mark Peterman, Jaan Noolandi
  • Publication number: 20070233240
    Abstract: The present invention provides a hydrogel-based intraocular lens (IOL) implant that can covalently attach to a lens capsule on implantation into an eye. The inventive IOL has a high refractive index, high elasticity, and is of a similar size to a naturally occurring lens. In addition, the IOL can be implanted in a smaller, dehydrated state, allowing the IOL to be placed in the lens capsule with a small incision (up to about 1/10 the volume of the IOL). Exposure to fluid can then initiate rapid swelling of the dried polymer to the shape and dimensions of a natural lens, with full occupation of the lens capsule. Upon equilibrium swelling, the IOL can then make contact with the inner aspect of the lens capsule and covalently bind to it. By this attachment process, the IOL may accommodate in a manner identical to that of the natural lens.
    Type: Application
    Filed: March 16, 2007
    Publication date: October 4, 2007
    Inventors: Curtis Frank, Christopher Ta, David Myung, Jaan Noolandi, Michael Carrasco, Won-Gun Koh
  • Publication number: 20070179605
    Abstract: The present invention provides materials that have high glucose and oxygen permeability, strength, water content, and resistance to protein adsorption. The materials include an interpenetrating polymer network (IPN) hydrogel that is coated with biomolecules. The IPN hydrogels include two interpenetrating polymer networks. The first polymer network is based on a hydrophilic telechelic macromonomer. The second polymer network is based on a hydrophilic monomer. The hydrophilic monomer is polymerized and cross-linked to form the second polymer network in the presence of the first polymer network. In a preferred embodiment, the hydrophilic telechelic macromonomer is PEG-diacrylate or PEG-dimethacrylate and the hydrophilic monomer is an acrylic-based monomer. Any biomolecules may be linked to the IPN hydrogels, but are preferably biomolecules that support the growth of cornea-derived cells. The material is designed to serve as a corneal prosthesis.
    Type: Application
    Filed: December 13, 2006
    Publication date: August 2, 2007
    Inventors: David Myung, Christopher Ta, Curtis Frank, Won-Gun Koh, Jaan Noolandi
  • Publication number: 20070126982
    Abstract: The present invention provides interpenetrating polymer network hydrogels that have high oxygen permeability, strength, water content, and resistance to protein adsorption. The hydrogels include two interpenetrating polymer networks. The first polymer network is based on a hydrophilic telechelic macromonomer. The second polymer network is based on a hydrophilic monomer. The hydrophilic monomer is polymerized and cross-linked to form the second polymer network in the presence of the first polymer network. The telechelic macromonomer preferably has a molecular weight of between about 575 Da and about 20,000 Da. Mixtures of molecular weights may also be used. In a preferred embodiment, the hydrophilic telechelic macromonomer is PEG-diacrylate or PEG-dimethacrylate and the hydrophilic monomer is an acrylic-based monomer. The material is designed to serve as a contact lens.
    Type: Application
    Filed: December 7, 2006
    Publication date: June 7, 2007
    Inventors: David Myung, Jaan Noolandi, Christopher Ta, Curtis Frank
  • Patent number: 7172712
    Abstract: A method of making a multichromal sphere includes the steps of preparing a composition of at least (1) a matrix material and (2) at least two sets of particles, each of the sets of particles having a color different from at least one of another of the sets of particles and a segregation (e.g., an electrical or magnetic) property different from at least one of another of the sets of particles, encapsulating the composition within a shell to form an encapsulated sphere, immobilizing the encapsulated sphere in a manner to restrict at least rotation of the encapsulated sphere, subjecting the immobilized encapsulated sphere to an external field associated with the segregation property different among the sets of particles, under conditions in which the sets of particles are able to migrate within the matrix material, thereby producing color segregation in the immobilized encapsulated sphere, and solidifying the matrix material while substantially maintaining the color segregation.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: February 6, 2007
    Assignee: Xerox Corporation
    Inventors: Peter M. Kazmaier, Barkev Keoshkerian, George Liebermann, Naveen Chopra, Hadi K. Mahabadi, Jaan Noolandi, Francisco E. Torres
  • Publication number: 20060287721
    Abstract: The present invention provides an artificial corneal implant having an optically clear central core and a porous, hydrophilic, biocompatible skirt peripheral to the central core. In one embodiment, the central core is made of an interpenetrating double network hydrogel and the skirt is made of poly(2-hydroxyethyl acrylate) (PHEA). In another embodiment, both the central core and the skirt are made of interpenetrating double network hydrogels. The artificial corneal implant may also have an interdiffusion zone in which the skirt component is interpenetrated with the core component, or vice versa. In a preferred embodiment, biomolecules are linked to the skirt, central core or both. These biomolecules may be any type of biomolecule, but are preferably biomolecules that support epithelial and/or fibroblast cell survival and growth. Preferably, the biomolecules are linked in a spatially selective manner. The present invention also provides a method of making an artificial corneal implant using photolithography.
    Type: Application
    Filed: April 20, 2006
    Publication date: December 21, 2006
    Inventors: David Myung, Christopher Ta, Nabeel Farooqui, Curtis Frank, Won-Gun Koh, Jungmin Ko, Jaan Noolandi, Michael Carrasco
  • Patent number: 7147865
    Abstract: Devices and methods are provided for administering a fluid to a neuronal site. The device comprises a reservoir, an aperture in fluid connection to the reservoir, and electrical means for moving to the fluid to or through the aperture. The electrical means may take the form of electroosmotic force, piezoelectric movement of a diaphragm or electrolysis of a solution. The electrical means may be external to the host, implanted in the host or may be photodiodes activated by light, particularly where the neuronal site is associated with the retina.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: December 12, 2006
    Assignee: The Board of Trustees of the Leland Stanford University
    Inventors: Harvey A. Fishman, David Bloom, Stacey F. Bent, Mark C. Peterman, Jaan Noolandi, Neville Mehenti
  • Patent number: 7121275
    Abstract: An improved method and apparatus for delivering medication to the lungs is described. Acoustic ink printing technology is modified to operate as an inhaler that generates tiny droplets near a patient's nose or mouth. The tiny droplets are easily carried by air currents into the patient's lungs. The inhaler itself is preferably a battery operated portable device that can be easily carried and easily cleaned to avoid contaminating the medication.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: October 17, 2006
    Assignee: Xerox Corporation
    Inventors: Jaan Noolandi, Babur B. Hadimioglu, Robert A. Sprague
  • Publication number: 20060102525
    Abstract: Various particle transport systems and components for use in such systems are described. The systems utilize one or more traveling wave grids to selectively transport, distribute, separate, or mix different populations of particles. Numerous systems configured for use in two dimensional and three dimensional particle transport are described.
    Type: Application
    Filed: November 12, 2004
    Publication date: May 18, 2006
    Inventors: Armin Volkel, David Biegelsen, Philip Floyd, Greg Anderson, Fred Endicott, Eric Peeters, Jaan Noolandi, Karen Moffat, Peter Kazmaier, Maria McDougall, Daniel Bobrow
  • Publication number: 20060083773
    Abstract: A material that can be applied as implants designed to artificially replace or augment the cornea, such as an artificial cornea, corneal onlay, or corneal inlay (intrastromal lens) is provided. The artificial corneal implant has a double network hydrogel with a first network interpenetrated with a second network. The first network and the second network are based on biocompatible polymers. At least one of the network polymers is based on a hydrophilic polymer. The artificial cornea or implant has epithelialization promoting biomolecules that are covalently linked to the surface of the double network hydrogel using an azide-active-ester chemical linker. Corneal epithelial cells or cornea-derived cells are adhered to the biomolecules. The double network has a physiologic diffusion coefficient to allow passage of nutrients to the adhered cells.
    Type: Application
    Filed: October 4, 2005
    Publication date: April 20, 2006
    Inventors: David Myung, Jaan Noolandi, Alan Smith, Curtis Frank, Christopher Ta, Yin Hu, Won-Gun Koh, Michael Carrasco
  • Patent number: 6976997
    Abstract: The invention provides implants suitable for use as an artificial cornea, and methods for making and using such implants. Artificial corneas having features of the invention may be two-phase artificial corneas, or may be three phase artificial corneas. These artificial corneas have a flexible, optically clear central core and a hydrophilic, porous skirt, both of which are biocompatible and allow for tissue integration. A three-phase artificial cornea will further have an interface region between the core and skirt. The artificial corneas have a high degree of ocular tolerance, and allow for tissue integration into the skirt and for epithelial cell growth over the surface of the prosthesis. The use of biocompatible material avoids the risk of disease transmission inherent with corneal transplants, and acts to minimize post-operative inflammation and so to reduce the chance or severity of tissue necrosis following implantation of the synthetic cornea onto a host eye.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: December 20, 2005
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jaan Noolandi, Christopher Ta, Philip Huie, Jr., Alan J. Smith, Robert Waymouth, Mark Blumenkranz
  • Publication number: 20050214345
    Abstract: A retinal implant is provided that uses an artificial biocompatible material as a support material on which retinal pigment epithelial cells, iris pigment epithelial cells, and/or stem cells can be deposited either in situ or in vivo. The support material has a surface topology that is rough to promote cell adhesion, has surface pits to allow pigment cells to grow into, and has pores to allow for proper diffusion of materials. The support material serves as a substrate for cell growth and as a patch for damaged basement membrane (Bruch's membrane). This cell-coated membrane or pigment cell-enriched membrane is surgically positioned in the sub-retinal space to rescue or restore photoreceptor cell function that may be damaged or threatened by degenerative diseases of the eye, such as age-related macular degeneration.
    Type: Application
    Filed: February 18, 2005
    Publication date: September 29, 2005
    Inventors: Theodore Leng, Dimitri Yellachich, Philip Huie, Jaan Noolandi, Harvey Fishman
  • Patent number: 6940485
    Abstract: A reflective display device includes a flexible pouch of ordered copolymer layers with a lamellar structure and a solvent, the flexible pouch having at least a first and second surface. A substrate is placed in operative contact with a first surface of the flexible pouch. Thereafter, one of a pressure or heat application mechanism is placed in operative connection with at least one of the first and second surfaces of the flexible pouch. A controller operatively associated with one of the pressure or heat application mechanisms, is used to selectively apply pressure and/or heat to the flexible pouch. The application of the heat or pressure at a specific location on the flexible pouch results in a change of reflectivity in the ordered copolymer layers, thereby altering the color at that location.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: September 6, 2005
    Assignee: Xerox Corporation
    Inventor: Jaan Noolandi