Patents by Inventor Jacob Newman

Jacob Newman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10427303
    Abstract: Electronic device processing systems may include a mainframe housing having a transfer chamber, a first carousel assembly, a second carousel assembly, a first load lock, a second load lock, and a robot adapted to operate in the transfer chamber to exchange substrates between the first and second carousels and the first and second load locks. The robot may include first and second end effectors operable to extend and/or retract simultaneously or sequentially along substantially co-parallel lines of action. Methods and multi-axis robots for transporting substrates are described, as are numerous other aspects.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: October 1, 2019
    Assignee: Applied Materials, Inc.
    Inventors: William T. Weaver, Malcolm N. Daniel, Jr., Robert B. Vopat, Jason M. Schaller, Jacob Newman, Dinesh Kanawade, Andrew J. Constant, Stephen C. Hickerson, Jeffrey C. Hudgens, Marvin L. Freeman
  • Publication number: 20190295872
    Abstract: Methods and apparatus for processing a substrate are provided herein. In one implementation, the apparatus includes a load lock chamber coupled to a transfer chamber. The transfer chamber is coupled to a thermal process chamber and a substrate is transferred between each of the load lock chamber, the transfer chamber, and the thermal process chamber. In other implementations, a process platform having a load lock chamber, a transfer chamber, and a thermal process chamber is disclosed. Methods of measuring oxygen concentration in a load lock chamber via evacuation of a transfer chamber are also described herein.
    Type: Application
    Filed: June 4, 2019
    Publication date: September 26, 2019
    Inventors: Shay ASSAF, Andrew CONSTANT, Jacob NEWMAN, Charles CARLSON, William Tyler WEAVER, Stephen HICKERSON
  • Patent number: 10361104
    Abstract: Methods and apparatus for processing a substrate are provided herein. In one implementation, the apparatus includes a load lock chamber coupled to a transfer chamber. The transfer chamber is coupled to a thermal process chamber and a substrate is transferred between each of the load lock chamber, the transfer chamber, and the thermal process chamber. In other implementations, a process platform having a load lock chamber, a transfer chamber, and a thermal process chamber is disclosed. Methods of measuring oxygen concentration in a load lock chamber via evacuation of a transfer chamber are also described herein.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: July 23, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shay Assaf, Andrew Constant, Jacob Newman, Charles Carlson, William Tyler Weaver, Stephen Hickerson
  • Patent number: 10325789
    Abstract: Embodiments described herein relate to apparatus and methods for thermally processing substrates. In one embodiment, a processing system includes a factory interface coupled to a plurality of load lock chambers. The plurality of load lock chambers are coupled to a transfer chamber which houses a robot. A thermal processing chamber is coupled to the transfer chamber and the robot is configured to transfer substrate between the load lock chambers and the thermal processing chamber. A multi-substrate support, which is disposed within the thermal processing chamber, rotates to facilitate efficient substrate thermal processing. A gas curtain apparatus disposed in a port plenum provides environment separation between the processing chamber and the transfer chamber while enabling efficient substrate transfer between the thermal processing chamber and the transfer chamber.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: June 18, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Jacob Newman
  • Publication number: 20190018053
    Abstract: An apparatus for relaying microwave field intensity in a microwave cavity. In some embodiments, the apparatus comprises a microwave transparent substrate with at least one Radio Frequency (RF) detector that is capable of detecting a microwave field and generating a signal associated with a field intensity of the detected microwave field and a transmitter that receives the signal associated with the detected microwave field from the RF detector and transmits or stores information about the detected microwave field intensity. In some embodiments, the apparatus relays the microwave intensity via a wired, wireless, or optical transmitter located in proximity of the RF detector.
    Type: Application
    Filed: July 13, 2017
    Publication date: January 17, 2019
    Inventors: ANANTHKRISHNA JUPUDI, YUEH SHENG OW, JACOB NEWMAN, PREETHAM RAO, YUICHI WADA, VINODH RAMACHANDRAN
  • Publication number: 20180254207
    Abstract: Methods and apparatus for processing a substrate are provided herein. In one implementation, the apparatus includes a load lock chamber coupled to a transfer chamber. The transfer chamber is coupled to a thermal process chamber and a substrate is transferred between each of the load lock chamber, the transfer chamber, and the thermal process chamber. In other implementations, a process platform having a load lock chamber, a transfer chamber, and a thermal process chamber is disclosed. Methods of measuring oxygen concentration in a load lock chamber via evacuation of a transfer chamber are also described herein.
    Type: Application
    Filed: July 26, 2017
    Publication date: September 6, 2018
    Inventors: Shay ASSAF, Andrew CONSTANT, Jacob NEWMAN, Charles CARLSON, William Tyler WEAVER, Stephen HICKERSON
  • Patent number: 9890473
    Abstract: Embodiments relate to methods and apparatus for batch processing of substrates during epitaxial film formation. In one example, a process chamber includes a chamber lid and substrate support. The chamber lid includes a centrally disposed gas inlet and a first gas deflector coupled to the chamber lid and adapted to direct the first process gas laterally across surfaces of a plurality of substrates. The lid also includes one or more gas outlets disposed radially outward of the centrally disposed gas inlet, and a plurality of lamps disposed between the centrally disposed gas inlet and the one or more gas outlets. The substrate support is rotatable and includes both a gas passage formed therein for introducing a second process gas to the internal volume of the process chamber and a second gas deflector adapted to direct the second process gas laterally across the surfaces of the plurality of substrates.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: February 13, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Jacob Newman
  • Publication number: 20170365288
    Abstract: Methods and apparatus for forming substrates having magnetically patterned surfaces is provided. A magnetic layer comprising one or more materials having magnetic properties is formed on a substrate. The magnetic layer is subjected to a patterning process in which selected portions of the surface of the magnetic layer are altered such that the altered portions have different magnetic properties from the non-altered portions without changing the topography of the substrate. A protective layer and a lubricant layer are deposited over the patterned magnetic layer. The patterning is accomplished through a number of processes that expose substrates to energy of varying forms. Apparatus and methods disclosed herein enable processing of two major surfaces of a substrate simultaneously, or sequentially by flipping. In some embodiments, magnetic properties of the substrate surface may be uniformly altered by plasma exposure and then selectively restored by exposure to patterned energy.
    Type: Application
    Filed: June 19, 2017
    Publication date: December 21, 2017
    Inventors: Majeed A. Foad, Jacob Newman, Jose Antonio Marin, Daniel J. Hoffman, Stephen Moffatt, Steven Verhaverbeke
  • Publication number: 20170213749
    Abstract: Embodiments described herein relate to apparatus and methods for thermally processing substrates. In one embodiment, a processing system includes a factory interface coupled to a plurality of load lock chambers. The plurality of load lock chambers are coupled to a transfer chamber which houses a robot. A thermal processing chamber is coupled to the transfer chamber and the robot is configured to transfer substrate between the load lock chambers and the thermal processing chamber. A multi-substrate support, which is disposed within the thermal processing chamber, rotates to facilitate efficient substrate thermal processing. A gas curtain apparatus disposed in a port plenum provides environment separation between the processing chamber and the transfer chamber while enabling efficient substrate transfer between the thermal processing chamber and the transfer chamber.
    Type: Application
    Filed: November 18, 2016
    Publication date: July 27, 2017
    Inventor: Jacob NEWMAN
  • Patent number: 9696097
    Abstract: Embodiments of multi-substrate thermal management apparatus are provided herein. In some embodiments, a multi-substrate thermal management apparatus includes a plurality of plates vertically arranged above one another; a plurality of channels extending through each of the plurality of plates; a supply manifold including a supply channel coupled to the plurality of plates at first locations; and a return manifold including a return channel coupled to the plurality of plates via a plurality of legs at second locations, wherein the supply and return channels are fluidly coupled to the plurality of channels to flow a heat transfer fluid through the plurality of plates.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: July 4, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kallol Bera, Kim Vellore, Andrew Constant, Jacob Newman, Jeffrey Blahnik, Jason Schaller, William Weaver, Robert Vopat, Benjamin Riordon
  • Patent number: 9685186
    Abstract: Methods and apparatus for forming substrates having magnetically patterned surfaces is provided. A magnetic layer comprising one or more materials having magnetic properties is formed on a substrate. The magnetic layer is subjected to a patterning process in which selected portions of the surface of the magnetic layer are altered such that the altered portions have different magnetic properties from the non-altered portions without changing the topography of the substrate. A protective layer and a lubricant layer are deposited over the patterned magnetic layer. The patterning is accomplished through a number of processes that expose substrates to energy of varying forms. Apparatus and methods disclosed herein enable processing of two major surfaces of a substrate simultaneously, or sequentially by flipping. In some embodiments, magnetic properties of the substrate surface may be uniformly altered by plasma exposure and then selectively restored by exposure to patterned energy.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: June 20, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Majeed A. Foad, Jacob Newman, Jose Antonio Marin, Daniel J. Hoffman, Stephen Moffatt, Steven Verhaverbeke
  • Patent number: 9530898
    Abstract: Semiconductor devices suitable for narrow pitch applications and methods of fabrication thereof are described herein. In some embodiments, a semiconductor device may include a floating gate having a first width proximate a base of the floating gate that is greater than a second width proximate a top of the floating gate. In some embodiments, a method of shaping a material layer may include (a) oxidizing a surface of a material layer to form an oxide layer at an initial rate; (b) terminating formation of the oxide layer when the oxidation rate is about 90% or below of the initial rate; (c) removing at least some of the oxide layer by an etching process; and (d) repeating (a) through (c) until the material layer is formed to a desired shape. In some embodiments, the material layer may be a floating gate of a semiconductor device.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: December 27, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Udayan Ganguly, Yoshitaka Yokota, Jing Tang, Sunderraj Thirupapuliyur, Christopher Sean Olsen, Shiyu Sun, Tze Wing Poon, Wei Liu, Johanes Swenberg, Vicky U. Nguyen, Swaminathar Srinivasan, Jacob Newman
  • Patent number: 9508576
    Abstract: Embodiments of the present invention relate to improvements to single-substrate, multi-chamber processing platform architecture for minimizing fabrication facility floor space requirements. Prior art systems require significant floor space around all sides to allow for adequate installation and servicing. Embodiments of the present invention provide platforms that allow for servicing the chambers and supporting systems via a front and rear of the platform allowing multiple, side-by-side platform placement within a fabrication facility, while providing improved serviceability of the platform components.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: November 29, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Jacob Newman, Dinesh Kanawade, Miriam Schwartz, Nir Merry, Michael Thomas Haag
  • Patent number: 9281222
    Abstract: A wafer handling system may include upper and lower linked robot arms that may move a wafer along a nonlinear trajectory between chambers of a semiconductor processing system. These features may result in a smaller footprint in which the semiconductor processing system may operate, smaller transfer chambers, smaller openings in process chambers, and smaller slit valves, while maintaining high wafer throughput. In some embodiments, simultaneous fast wafer swaps between two separate chambers, such as load locks and ALD (atomic layer deposition) carousels, may be provided. Methods of wafer handling are also provided, as are other aspects.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: March 8, 2016
    Assignee: Applied Materials, Inc.
    Inventors: William Tyler Weaver, Malcolm N. Daniel, Jr., Robert B. Vopat, Jason M. Schaller, Jacob Newman, Dinesh Kanawade, Andrew J. Constant, Stephen C. Hickerson, Jeffrey C. Hudgens, Marvin L. Freeman
  • Publication number: 20160033205
    Abstract: Embodiments of multi-substrate thermal management apparatus are provided herein. In some embodiments, a multi-substrate thermal management apparatus includes a plurality of plates vertically arranged above one another; a plurality of channels extending through each of the plurality of plates; a supply manifold including a supply channel coupled to the plurality of plates at first locations; and a return manifold including a return channel coupled to the plurality of plates via a plurality of legs at second locations, wherein the supply and return channels are fluidly coupled to the plurality of channels to flow a heat transfer fluid through the plurality of plates.
    Type: Application
    Filed: October 1, 2014
    Publication date: February 4, 2016
    Inventors: KALLOL BERA, KIM VELLORE, ANDREW CONSTANT, JACOB NEWMAN, JEFFREY BLAHNIK, JASON SCHALLER, WILLIAM WEAVER, ROBERT VOPAT, BENJAMIN RIORDON
  • Publication number: 20160002821
    Abstract: Embodiments relate to methods and apparatus for batch processing of substrates during epitaxial film formation. In one example, a process chamber includes a chamber lid and substrate support. The chamber lid includes a centrally disposed gas inlet and a first gas deflector coupled to the chamber lid and adapted to direct the first process gas laterally across surfaces of a plurality of substrates. The lid also includes one or more gas outlets disposed radially outward of the centrally disposed gas inlet, and a plurality of lamps disposed between the centrally disposed gas inlet and the one or more gas outlets. The substrate support is rotatable and includes both a gas passage formed therein for introducing a second process gas to the internal volume of the process chamber and a second gas deflector adapted to direct the second process gas laterally across the surfaces of the plurality of substrates.
    Type: Application
    Filed: June 10, 2015
    Publication date: January 7, 2016
    Inventor: Jacob NEWMAN
  • Publication number: 20150102396
    Abstract: Semiconductor devices suitable for narrow pitch applications and methods of fabrication thereof are described herein. In some embodiments, a semiconductor device may include a floating gate having a first width proximate a base of the floating gate that is greater than a second width proximate a top of the floating gate. In some embodiments, a method of shaping a material layer may include (a) oxidizing a surface of a material layer to form an oxide layer at an initial rate; (b) terminating formation of the oxide layer when the oxidation rate is about 90% or below of the initial rate; (c) removing at least some of the oxide layer by an etching process; and (d) repeating (a) through (c) until the material layer is formed to a desired shape. In some embodiments, the material layer may be a floating gate of a semiconductor device.
    Type: Application
    Filed: October 16, 2014
    Publication date: April 16, 2015
    Inventors: UDAYAN GANGULY, YOSHITAKA YOKOTA, JING TANG, SUNDERRAJ THIRUPAPULIYUR, CHRISTOPHER SEAN OLSEN, SHIYU SUN, TZE WING POON, WEI LIU, JOHANES SWENBERG, VICKY U. NGUYEN, SWAMINATHAR SRINIVASAN, JACOB NEWMAN
  • Patent number: 8894344
    Abstract: A wafer buffering system is provided herein. In some embodiments, a wafer buffering system may include a frame having a vertical shaft disposed therethrough; two storage platforms, coupled to the frame on either side thereof, each to receive a wafer carrier thereon; and a transfer mechanism coupled to the vertical shaft and capable of vertical movement therealong and lateral movement along an x-axis extending in either direction from the frame at least sufficient to move over the two storage platforms. The transfer mechanism may further include a telescoping fork arm capable of laterally extending in a first direction and in a second direction corresponding to lateral positions of the two storage platforms on either side of the frame.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: November 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Nir Merry, Jacob Newman
  • Patent number: 8871645
    Abstract: Semiconductor devices suitable for narrow pitch applications and methods of fabrication thereof are described herein. In some embodiments, a semiconductor device may include a floating gate having a first width proximate a base of the floating gate that is greater than a second width proximate a top of the floating gate. In some embodiments, a method of shaping a material layer may include (a) oxidizing a surface of a material layer to form an oxide layer at an initial rate; (b) terminating formation of the oxide layer when the oxidation rate is about 90% or below of the initial rate; (c) removing at least some of the oxide layer by an etching process; and (d) repeating (a) through (c) until the material layer is formed to a desired shape. In some embodiments, the material layer may be a floating gate of a semiconductor device.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: October 28, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Udayan Ganguly, Yoshita Yokota, Jing Tang, Sunderraj Thirupapuliyur, Christopher Sean Olsen, Shiyu Sun, Tze Wing Poon, Wei Liu, Johanes Swenberg, Vicky U. Nguyen, Swaminathan Srinivasan, Jacob Newman
  • Publication number: 20140271050
    Abstract: A wafer handling system may include upper and lower linked robot arms that may move a wafer along a nonlinear trajectory between chambers of a semiconductor processing system. These features may result in a smaller footprint in which the semiconductor processing system may operate, smaller transfer chambers, smaller openings in process chambers, and smaller slit valves, while maintaining high wafer throughput. In some embodiments, simultaneous fast wafer swaps between two separate chambers, such as load locks and ALD (atomic layer deposition) carousels, may be provided. Methods of wafer handling are also provided, as are other aspects.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 18, 2014
    Inventors: William Tyler Weaver, Malcolm N. Daniel, JR., Robert B. Vopat, Jason M. Schaller, Jacob Newman, Dinesh Kanawade, Andrew J. Constant, Stephen C. Hickerson, Jeffrey C. Hudgens, Marvin L. Freeman