Patents by Inventor Jagar Singh

Jagar Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210234052
    Abstract: A device includes a substrate having a top surface and a bottom surface. A first doping well having a first part and a second part is located in the substrate. An undoped moat is in the substrate between the first doping well and a second doping well. A diode includes an anode with an increased first doping concentration region in the first doping well and a cathode with an increased second doping concentration region in the second doping well. An isolation region is in the first doping well having a first portion proximate the top surface and a second portion distal to the top surface. A gap made of an undoped region is in the first doping well between the first part and the second part. The gap is located between the distal portion of the isolation region and the bottom surface of the substrate.
    Type: Application
    Filed: January 28, 2020
    Publication date: July 29, 2021
    Applicant: GLOBALFOUNDRIES U.S. INC.
    Inventors: Jagar Singh, Sudarshan Narayanan
  • Publication number: 20210226044
    Abstract: Structures for a heterojunction bipolar transistor and methods of forming a structure for a heterojunction bipolar transistor. A first portion of a first semiconductor layer defines an emitter, a first portion of a second semiconductor layer defines a collector, and a base includes respective second portions of the first and second semiconductor layers that are laterally positioned between the first portion of the first semiconductor layer and the first portion of the second semiconductor layer. The first portion of the first semiconductor layer has a first thickness, and the first portion of the second semiconductor layer has a second thickness that is greater than the first thickness. The first portion and the second portion of the first semiconductor layer adjoin at a first junction having the first thickness. The first portion and the second portion of the second semiconductor layer adjoin at a second junction having the second thickness.
    Type: Application
    Filed: January 17, 2020
    Publication date: July 22, 2021
    Inventors: Alexander Derrickson, Edmund K. Banghart, Alexander Martin, Ryan Sporer, Jagar Singh, Katherina Babich, George R. Mulfinger
  • Patent number: 11049955
    Abstract: One illustrative device disclosed herein includes a transistor formed above a semiconductor-on-insulator (SOI) substrate, wherein the transistor comprises a gate structure, a sidewall spacer and source/drain regions, openings formed in the active layer in the source/drain regions adjacent the sidewall spacer, recesses formed in a buried insulation layer of the SOI substrate in the source/drain regions of the transistor, wherein the recesses extend laterally under a portion of the active layer, and an epi semiconductor material positioned in at least the recesses in the buried insulation layer.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: June 29, 2021
    Assignee: GLOBALFOUNDRIES U.S. Inc.
    Inventors: Shesh Mani Pandey, Jagar Singh, Judson R. Holt
  • Publication number: 20210175370
    Abstract: One illustrative Schottky diode disclosed herein includes a semiconductor substrate, an anode region and a cathode region. The anode region includes a plurality of first fins with a first vertical height formed in the anode region, wherein an upper surface of the semiconductor substrate is exposed within the anode region. The cathode region includes a plurality of second fins with a second vertical height that is greater than the first vertical height. The device also includes a conductive structure that contacts and engages at least an upper surface of the plurality of first fins in the anode region.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 10, 2021
    Inventors: Jagar Singh, Srikanth Balaji Samavedam
  • Publication number: 20210134987
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to gate controlled transistors and methods of manufacture. The structure includes: an emitter region; a collector region; base regions on opposing sides of the emitter region and the collector region; and a gate structure composed of a body region and leg regions, the body region being located between the base regions on opposing sides of the emitter region and the collector region, and the leg regions isolating the base regions from both the emitter region and the collector region.
    Type: Application
    Filed: November 5, 2019
    Publication date: May 6, 2021
    Inventors: Mankyu YANG, Jagar SINGH, Alexander MARTIN, John J. ELLIS-MONAGHAN
  • Publication number: 20210126126
    Abstract: A semiconductor device is disclosed including a semiconductor layer, a first well doped with dopants of a first conductivity type defined in the semiconductor layer, a second well doped with dopants of a second conductivity type different than the first conductivity type defined in the semiconductor layer adjacent the first well to define a PN junction between the first and second wells, and an isolation structure positioned in the second well. The semiconductor device also includes a first source/drain region positioned in the first well, a second source/drain region positioned in the second well adjacent a first side of the isolation structure, a doped region positioned in the second well adjacent a second side of the isolation structure, and a gate structure positioned above the semiconductor layer, wherein the gate structure vertically overlaps a portion of the doped region.
    Type: Application
    Filed: October 24, 2019
    Publication date: April 29, 2021
    Inventors: Jagar Singh, Luigi Pantisano, Anvitha Shampur, Frank Scott Johnson, Srikanth Balaji Samavedam
  • Publication number: 20210091212
    Abstract: Structures for a heterojunction bipolar transistor and methods of forming a structure for a heterojunction bipolar transistor. A base layer is positioned in a cavity in a semiconductor layer, a first terminal is coupled to the base layer, and a second terminal is coupled to a portion of the semiconductor layer. The second terminal is laterally spaced from the first terminal, and the portion of the semiconductor layer is laterally positioned between the second terminal and the base layer.
    Type: Application
    Filed: January 3, 2020
    Publication date: March 25, 2021
    Inventors: Judson Holt, Alexander Derrickson, Ryan Sporer, George R. Mulfinger, Alexander Martin, Jagar Singh
  • Publication number: 20210066450
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to high voltage diode structures and methods of manufacture. The structure includes: a diode structure composed of first well of a first dopant type in a substrate; and a well ring structure of the first dopant type in the substrate which completely surrounds the first well of the first dopant type, and spaced a distance “x” from the first well to cut a leakage path to a shallower second well of a second dopant type.
    Type: Application
    Filed: November 13, 2020
    Publication date: March 4, 2021
    Inventors: Jagar SINGH, Shiv Kumar MISHRA
  • Publication number: 20210036108
    Abstract: An illustrative device includes a transistor including a first set of fins defined above a substrate, a second set of fins defined above the substrate, and a gate structure embedded in the substrate between the first set of fins and the second set of fins, wherein the first set of fins and the second set of fins are doped with a first dopant type and the substrate is doped with a second dopant type different than the first dopant type.
    Type: Application
    Filed: July 30, 2019
    Publication date: February 4, 2021
    Inventors: Jagar Singh, Srikanth Balaji Samavedam
  • Patent number: 10896953
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to high voltage diode structures and methods of manufacture. The structure includes: a diode structure composed of first well of a first dopant type in a substrate; and a well ring structure of the first dopant type in the substrate which completely surrounds the first well of the first dopant type, and spaced a distance “x” from the first well to cut a leakage path to a shallower second well of a second dopant type.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: January 19, 2021
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Jagar Singh, Shiv Kumar Mishra
  • Patent number: 10879171
    Abstract: One illustrative integrated circuit product disclosed herein includes a vertically oriented semiconductor (VOS) structure positioned above a semiconductor substrate, a conductive silicide vertically oriented e-fuse positioned along at least a portion of a vertical height of the VOS structure wherein the conductive silicide vertically oriented e-fuse comprises a metal silicide material that extends through at least a portion of an entire lateral width of the VOS structure, and a conductive metal silicide region in the semiconductor substrate that is conductively coupled to the conductive silicide vertically oriented e-fuse.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: December 29, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Chun Yu Wong, Kwan-Yong Lim, Seong Yeol Mun, Jagar Singh, Hui Zang
  • Publication number: 20200388696
    Abstract: One illustrative method of forming heterojunction bipolar devices includes, among other things, forming a first gate structure above an active semiconductor layer, forming a second gate structure adjacent a first side of the first gate structure, forming a third gate structure adjacent a second side of the first gate structure, forming an emitter of a bipolar transistor in the active semiconductor layer between the first gate structure and the second gate structure, forming a collector of the bipolar transistor in the active semiconductor layer between the first gate structure and the third gate structure, and forming a first base contact contacting the active region adjacent an end of the first gate structure, wherein a portion of the active semiconductor layer positioned under the first gate structure defines a base of the bipolar transistor.
    Type: Application
    Filed: June 4, 2019
    Publication date: December 10, 2020
    Inventors: Alexander Lee Martin, Jagar Singh
  • Patent number: 10832842
    Abstract: A first layer on a substrate includes an insulator material portion adjacent an energy-reactive material portion. The energy-reactive material portion evaporates upon application of energy during manufacturing. Processing patterns the first layer to include recesses extending to the substrate in at least the energy-reactive material portion. The recesses are filled with a conductor material, and a porous material layer is formed on the first layer and on the conductor material. Energy is applied to the porous material layer to: cause the energy to pass through the porous material layer and reach the energy-reactive material portion; cause the energy-reactive material portion to evaporate; and fully remove the energy-reactive material portion from an area between the substrate and the porous material layer, and this leaves a void between the substrate and the porous material layer and adjacent to the conductor material.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: November 10, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Sunil K. Singh, Jagar Singh
  • Patent number: 10833183
    Abstract: One device disclosed herein includes, among other things, first and second conductive features embedded in a first dielectric layer, a cap layer positioned above the first dielectric layer, a ballistic transport material contacting the first conductive member and positioned above a portion of the first dielectric layer, and first and second contacts contacting the first and second conductive features.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: November 10, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Joshua Dillon, Siva P. Adusumilli, Jagar Singh, Anthony Stamper, Laura Schutz
  • Publication number: 20200328272
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to high voltage diode structures and methods of manufacture. The structure includes: a diode structure composed of first well of a first dopant type in a substrate; and a well ring structure of the first dopant type in the substrate which completely surrounds the first well of the first dopant type, and spaced a distance “x” from the first well to cut a leakage path to a shallower second well of a second dopant type.
    Type: Application
    Filed: April 12, 2019
    Publication date: October 15, 2020
    Inventors: Jagar SINGH, Shiv Kumar MISHRA
  • Patent number: 10699961
    Abstract: Structures for switches and methods for forming structures that include a switch. A first well and a section well are arranged in a substrate. Trench isolation regions are arranged in the substrate to define multiple active device regions. Each of the active device regions includes a section of the first well that is surrounded by the trench isolation regions. The second well has an opposite conductivity type from the first well. The active device regions and the trench isolation regions are arranged between the top surface of the substrate and the second well, and the second well is contiguous with the trench isolation regions.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: June 30, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Jagar Singh, Edward J. Nowak
  • Publication number: 20200144404
    Abstract: One device disclosed herein includes, among other things, first and second conductive features embedded in a first dielectric layer, a cap layer positioned above the first dielectric layer, a ballistic transport material contacting the first conductive member and positioned above a portion of the first dielectric layer, and first and second contacts contacting the first and second conductive features.
    Type: Application
    Filed: November 1, 2018
    Publication date: May 7, 2020
    Inventors: Joshua Dillon, Siva P. Adusumilli, Jagar Singh, Anthony Stamper, Laura Schutz
  • Patent number: 10644149
    Abstract: Structures for a laterally-diffused metal-oxide-semiconductor device and methods of forming a laterally-diffused metal-oxide-semiconductor device. A fin projects from a substrate, a channel region and a drain extension are arranged in a first section of the fin and the substrate beneath the first section of the fin, a source region is arranged in the first section of the fin, a drain region is arranged in a second section of the fin and the substrate beneath the second section of the fin, and a gate structure is arranged over the channel region. The drain region and the source region have an opposite conductivity type from the channel region. A trench isolation region is arranged in the fin between the first section of the fin and the second section of the fin. A dummy gate is arranged over a portion of the second section of the fin.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: May 5, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Jagar Singh, Jerome Ciavatti
  • Publication number: 20200135917
    Abstract: Structures for a laterally-diffused metal-oxide-semiconductor device and methods of forming a laterally-diffused metal-oxide-semiconductor device. A fin projects from a substrate, a channel region and a drain extension are arranged in a first section of the fin and the substrate beneath the first section of the fin, a source region is arranged in the first section of the fin, a drain region is arranged in a second section of the fin and the substrate beneath the second section of the fin, and a gate structure is arranged over the channel region. The drain region and the source region have an opposite conductivity type from the channel region. A trench isolation region is arranged in the fin between the first section of the fin and the second section of the fin. A dummy gate is arranged over a portion of the second section of the fin.
    Type: Application
    Filed: October 26, 2018
    Publication date: April 30, 2020
    Inventors: Jagar Singh, Jerome Ciavatti
  • Publication number: 20200135895
    Abstract: One illustrative device disclosed herein includes a transistor formed above a semiconductor-on-insulator (SOI) substrate, wherein the transistor comprises a gate structure, a sidewall spacer and source/drain regions, openings formed in the active layer in the source/drain regions adjacent the sidewall spacer, recesses formed in a buried insulation layer of the SOI substrate in the source/drain regions of the transistor, wherein the recesses extend laterally under a portion of the active layer, and an epi semiconductor material positioned in at least the recesses in the buried insulation layer.
    Type: Application
    Filed: December 26, 2019
    Publication date: April 30, 2020
    Inventors: Shesh Mani Pandey, Jagar Singh, Judson R. Holt