Patents by Inventor Jagar Singh

Jagar Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200127120
    Abstract: Methods, apparatus, and systems for forming a semiconductor substrate comprising a well region containing a first impurity; forming a gate on the semiconductor substrate above the well region; implanting a second impurity, of a type opposite the first impurity, in the well region on each side of the gate and to a depth above a bottom of the well region, to form two second impurity regions each having a first concentration; removing an upper portion of each second impurity region, to yield two source/drain (S/D) cavities above two depletion regions; and growing epitaxially a doped S/D region in each S/D cavity, wherein each S/D region comprises the second impurity having a second concentration greater than the first concentration.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 23, 2020
    Inventors: Arkadiusz Malinowski, Jagar Singh
  • Patent number: 10593754
    Abstract: Semiconductor structures and methods of forming semiconductor structures. Trench isolation regions arranged to surround an active device region The trench isolation regions extend through a device layer and a buried oxide layer of a silicon-on-insulator wafer into a substrate of the silicon-on-insulator wafer. A well is arranged in the substrate outside of the trench isolation regions, and a doped region is arranged in a portion of the substrate. The doped region is arranged in a portion of the substrate that is located in a horizontal direction adjacent to one of the trench isolation regions and in a vertical direction adjacent to the buried oxide layer. The doped region and the well have the same conductivity type.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: March 17, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Jagar Singh, Jerome Ciavatti, Jae Gon Lee, Josef Watts
  • Publication number: 20200035785
    Abstract: Semiconductor structures and methods of forming semiconductor structures. Trench isolation regions arranged to surround an active device region The trench isolation regions extend through a device layer and a buried oxide layer of a silicon-on-insulator wafer into a substrate of the silicon-on-insulator wafer. A well is arranged in the substrate outside of the trench isolation regions, and a doped region is arranged in a portion of the substrate. The doped region is arranged in a portion of the substrate that is located in a horizontal direction adjacent to one of the trench isolation regions and in a vertical direction adjacent to the buried oxide layer. The doped region and the well have the same conductivity type.
    Type: Application
    Filed: July 25, 2018
    Publication date: January 30, 2020
    Inventors: Jagar Singh, Jerome Ciavatti, Jae Gon Lee, Josef Watts
  • Patent number: 10546943
    Abstract: Methods, apparatus, and systems for forming a semiconductor substrate comprising a well region containing a first impurity; forming a gate on the semiconductor substrate above the well region; implanting a second impurity, of a type opposite the first impurity, in the well region on each side of the gate and to a depth above a bottom of the well region, to form two second impurity regions each having a first concentration; removing an upper portion of each second impurity region, to yield two source/drain (S/D) cavities above two depletion regions; and growing epitaxially a doped S/D region in each S/D cavity, wherein each S/D region comprises the second impurity having a second concentration greater than the first concentration.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: January 28, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Arkadiusz Malinowski, Jagar Singh
  • Publication number: 20200020631
    Abstract: One illustrative integrated circuit product disclosed herein includes a vertically oriented semiconductor (VOS) structure positioned above a semiconductor substrate, a conductive silicide vertically oriented e-fuse positioned along at least a portion of a vertical height of the VOS structure wherein the conductive silicide vertically oriented e-fuse comprises a metal silicide material that extends through at least a portion of an entire lateral width of the VOS structure, and a conductive metal silicide region in the semiconductor substrate that is conductively coupled to the conductive silicide vertically oriented e-fuse.
    Type: Application
    Filed: September 23, 2019
    Publication date: January 16, 2020
    Inventors: Chun Yu Wong, Kwan-Yong Lim, Seong Yeol Mun, Jagar Singh, Hui Zang
  • Publication number: 20200013679
    Abstract: Structures for switches and methods for forming structures that include a switch. A first well and a section well are arranged in a substrate. Trench isolation regions are arranged in the substrate to define multiple active device regions. Each of the active device regions includes a section of the first well that is surrounded by the trench isolation regions. The second well has an opposite conductivity type from the first well. The active device regions and the trench isolation regions are arranged between the top surface of the substrate and the second well, and the second well is contiguous with the trench isolation regions.
    Type: Application
    Filed: July 9, 2018
    Publication date: January 9, 2020
    Inventors: Jagar Singh, Edward J. Nowak
  • Publication number: 20200013551
    Abstract: A first layer on a substrate includes an insulator material portion adjacent an energy-reactive material portion. The energy-reactive material portion evaporates upon application of energy during manufacturing. Processing patterns the first layer to include recesses extending to the substrate in at least the energy-reactive material portion. The recesses are filled with a conductor material, and a porous material layer is formed on the first layer and on the conductor material. Energy is applied to the porous material layer to: cause the energy to pass through the porous material layer and reach the energy-reactive material portion; cause the energy-reactive material portion to evaporate; and fully remove the energy-reactive material portion from an area between the substrate and the porous material layer, and this leaves a void between the substrate and the porous material layer and adjacent to the conductor material.
    Type: Application
    Filed: August 26, 2019
    Publication date: January 9, 2020
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Sunil K. Singh, Jagar Singh
  • Patent number: 10510662
    Abstract: One illustrative method disclosed herein comprises forming a vertically oriented semiconductor (VOS) structure in a semiconductor substrate and performing a metal silicide formation process to convert at least a portion of the VOS structure into a metal silicide material, thereby forming a conductive silicide vertically oriented e-fuse.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: December 17, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Chun Yu Wong, Kwan-Yong Lim, Seong Yeol Mun, Jagar Singh, Hui Zang
  • Patent number: 10475921
    Abstract: An LDFET may be formed on the basis of manufacturing platforms designed for forming sophisticated small signal transistor elements. To this end, sidewall areas of trench isolation regions laterally positioned within the drift region may be used as current paths, thereby achieving increased design flexibility, since efficient current paths may still be established, even if the trench isolation regions have to extend into the substrate material due to design criteria determined by the sophisticated small signal transistor elements. In some illustrative embodiments, isolation of P-LDFETs with respect to the P-substrate may be accomplished without requiring a deep well implantation.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: November 12, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Jagar Singh
  • Patent number: 10461029
    Abstract: Methods of forming a hybrid electrically programmable fuse (e-fuse) structure and the hybrid e-fuse structure are disclosed. In various embodiments, the e-fuse structure includes: a substrate; an insulator layer over the substrate; a pair of contact regions overlying the insulator layer; and a silicide channel overlying the insulator layer and connecting the pair of contact regions, the silicide channel having a first portion including silicide silicon and a second portion coupled with the first portion and on a common level with the first portion, the second portion including silicide silicon germanium (SiGe) or silicide silicon phosphorous (SiP).
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: October 29, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Chun Yu Wong, Jagar Singh
  • Publication number: 20190326413
    Abstract: Methods, apparatus, and systems for forming a semiconductor substrate comprising a well region containing a first impurity; forming a gate on the semiconductor substrate above the well region; implanting a second impurity, of a type opposite the first impurity, in the well region on each side of the gate and to a depth above a bottom of the well region, to form two second impurity regions each having a first concentration; removing an upper portion of each second impurity region, to yield two source/drain (S/D) cavities above two depletion regions; and growing epitaxially a doped S/D region in each S/D cavity, wherein each S/D region comprises the second impurity having a second concentration greater than the first concentration.
    Type: Application
    Filed: April 24, 2018
    Publication date: October 24, 2019
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Arkadiusz Malinowski, Jagar Singh
  • Patent number: 10453605
    Abstract: A first layer on a substrate includes an insulator material portion adjacent an energy-reactive material portion. The energy-reactive material portion evaporates upon application of energy during manufacturing. Processing patterns the first layer to include recesses extending to the substrate in at least the energy-reactive material portion. The recesses are filled with a conductor material, and a porous material layer is formed on the first layer and on the conductor material. Energy is applied to the porous material layer to: cause the energy to pass through the porous material layer and reach the energy-reactive material portion; cause the energy-reactive material portion to evaporate; and fully remove the energy-reactive material portion from an area between the substrate and the porous material layer, and this leaves a void between the substrate and the porous material layer and adjacent to the conductor material.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: October 22, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Sunil K. Singh, Jagar Singh
  • Publication number: 20190312109
    Abstract: Device structures for a field-effect transistor and methods of forming a device structure for a field-effect transistor. A channel region is formed that includes first and second semiconductor layers, and a gate structure is formed that is arranged over the first and second semiconductor layers. First and second source/drain regions are formed in which the second source/drain region is separated from the first source/drain region by the channel region. The first semiconductor layer is composed of a semiconductor material having a first carrier mobility, and the second semiconductor layer is composed of a semiconductor material having a second carrier mobility that is greater than the first carrier mobility of the first semiconductor layer.
    Type: Application
    Filed: April 5, 2018
    Publication date: October 10, 2019
    Inventors: Heimanu Niebojewski, Jagar Singh
  • Publication number: 20190245080
    Abstract: An LDFET may be formed on the basis of manufacturing platforms designed for forming sophisticated small signal transistor elements. To this end, sidewall areas of trench isolation regions laterally positioned within the drift region may be used as current paths, thereby achieving increased design flexibility, since efficient current paths may still be established, even if the trench isolation regions have to extend into the substrate material due to design criteria determined by the sophisticated small signal transistor elements. In some illustrative embodiments, isolation of P-LDFETs with respect to the P-substrate may be accomplished without requiring a deep well implantation.
    Type: Application
    Filed: February 5, 2018
    Publication date: August 8, 2019
    Inventor: Jagar Singh
  • Patent number: 10332834
    Abstract: Semiconductor fuses with nanowire fuse links and fabrication methods thereof are presented. The methods include, for instance: fabricating a semiconductor fuse, the semiconductor fuse including at least one nanowire fuse link, and the fabricating including: forming at least one nanowire, the at least one nanowire including a semiconductor material; and reacting the at least one nanowire with a metal to form the at least one nanowire fuse link of the semiconductor fuse, the at least one nanowire fuse link including a semiconductor-metal alloy. In another aspect, a structure is presented. The structure includes: a semiconductor fuse, the semiconductor fuse including: at least one nanowire fuse link, the at least one nanowire fuse link including a semiconductor-metal alloy.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: June 25, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Chun Yu Wong, Jagar Singh, Ashish Baraskar, Min-hwa Chi
  • Patent number: 10290698
    Abstract: An illustrative method includes, among other things, forming a plurality of fins. A subset of the plurality of fins is selectively removed, leaving at least a first fin to define a first fin portion and at least a second fin to define a second fin portion. A first type of dopant is implanted into a substrate to define a resistor body and the first type of dopant is implanted into the first and second fins. The first fin portion is disposed above a first end of the resistor body and the second fin is disposed above a second end of the resistor body. An insulating layer is formed above the resistor body. At least one gate structure is formed above the insulating layer and above the resistor body.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: May 14, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Jagar Singh
  • Patent number: 10290712
    Abstract: Field-effect transistor structures for a laterally-diffused metal-oxide-semiconductor (LDMOS) device and methods of forming a LDMOS device. First and second fins are formed that extend vertically from a top surface of a substrate. A body region is arranged partially in the substrate and partially in the first fin. A drain region is arranged partially in the substrate, partially in the first fin, and partially in the second fin. The body and drain regions respectively have opposite first and second conductivity types. A source region of the second conductivity type is located within the first well in the first fin, and a gate structure is arranged to overlap with a portion of the first fin. The first fin is separated from the second fin by a cut extending vertically to the top surface of the substrate. An isolation region is arranged in the cut between the first fin and the second fin.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: May 14, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jerome Ciavatti, Jagar Singh, Hui Zang
  • Publication number: 20190139892
    Abstract: One illustrative method disclosed herein comprises forming a vertically oriented semiconductor (VOS) structure in a semiconductor substrate and performing a metal silicide formation process to convert at least a portion of the VOS structure into a metal silicide material, thereby forming a conductive silicide vertically oriented e-fuse.
    Type: Application
    Filed: November 7, 2017
    Publication date: May 9, 2019
    Inventors: Chun Yu Wong, Kwan-Yong Lim, Seong Yeol Mun, Jagar Singh, Hui Zang
  • Publication number: 20190131406
    Abstract: Field-effect transistor structures for a laterally-diffused metal-oxide-semiconductor (LDMOS) device and methods of forming a LDMOS device. First and second fins are formed that extend vertically from a top surface of a substrate. A body region is arranged partially in the substrate and partially in the first fin. A drain region is arranged partially in the substrate, partially in the first fin, and partially in the second fin. The body and drain regions respectively have opposite first and second conductivity types. A source region of the second conductivity type is located within the first well in the first fin, and a gate structure is arranged to overlap with a portion of the first fin. The first fin is separated from the second fin by a cut extending vertically to the top surface of the substrate. An isolation region is arranged in the cut between the first fin and the second fin.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 2, 2019
    Inventors: Jerome Ciavatti, Jagar Singh, Hui Zang
  • Patent number: 10276700
    Abstract: A symmetrical lateral bipolar junction transistor (SLBJT) is provided. The SLBJT includes a p-type semiconductor substrate, a n-type well, an emitter of a SLBJT situated in the n-type well, a base of the SLBJT situated in the n-type well and spaced from the emitter by a distance on one side of the base, a collector of the SLBJT situated in the n-type well and spaced from the base by the distance on an opposite side of the base, and an electrical connection to the substrate outside the n-type well. The SLBJT is used to characterize a transistor in a circuit by electrically coupling the SLBJT to a gate of the test transistor, applying a voltage to the gate, and characterizing aspect(s) of the test transistor under the applied voltage. The SLBJT protects the gate against damage to the gate dielectric.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: April 30, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Biswanath Senapati, Jagar Singh