Patents by Inventor Jaime Cummins

Jaime Cummins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11695503
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of mixing input data with coefficient data specific to a processing mode selection. For example, a computing system with processing units may mix the input data for a transmission in a radio frequency (RF) wireless domain with the coefficient data to generate output data that is representative of the transmission being processed according to a specific processing mode selection. The processing mode selection may include a single processing mode, a multi-processing mode, or a full processing mode. The processing mode selection may be associated with an aspect of a wireless protocol. Examples of systems and methods described herein may facilitate the processing of data for 5G wireless communications in a power-efficient and time-efficient manner.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: July 4, 2023
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Fa-Long Luo, Jaime Cummins, Jeremy Chritz, Tamara Schmitz
  • Publication number: 20230208449
    Abstract: Examples described herein utilize multi-layer neural networks to decode encoded data (e.g., data encoded using one or more encoding techniques). The neural networks may have nonlinear mapping and distributed processing capabilities which may be advantageous in many systems employing the neural network decoders. In this manner, neural networks described herein may be used to implement error code correction (ECC) decoders.
    Type: Application
    Filed: March 6, 2023
    Publication date: June 29, 2023
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: FA-LONG LUO, JAIME CUMMINS, TAMARA SCHMITZ
  • Patent number: 11677685
    Abstract: An apparatus is disclosed. The apparatus comprises a plurality of antennas and an integrated circuit chip coupled to the plurality of antennas, and is configured to process cellular signals received from the plurality of antennas in accordance with a cellular communication protocol and to process radio frequency identification (RFID) signals received from the plurality of antennas in accordance with an RFID protocol.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: June 13, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Jeremy Chritz, Tamara Schmitz, John L. Watson, John Schroeter, Fa-Long Luo, Jaime Cummins
  • Patent number: 11671291
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of mixing input data with coefficient data specific to a processing mode selection. For example, a computing system with processing units may mix the input data for a transmission in a radio frequency (RF) wireless domain with the coefficient data to generate output data that is representative of the transmission being processed according to a specific processing mode selection. The input data is mixed with coefficient data at layers of multiplication/accumulation processing units (MAC units). The processing mode selection may be associated with an aspect of a wireless protocol. Examples of systems and methods described herein may facilitate the processing of data for 5G wireless communications in a power-efficient and time-efficient manner.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: June 6, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Jaime Cummins, Tamara Schmitz, Jeremy Chritz
  • Patent number: 11665710
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of configuration modes for baseband units (BBU) and remote radio heads (RRH). For example, a computing system including a BBU and a RRH may receive a configuration mode selection including information indicative of a configuration mode for respective processing units of the BBU and the RRH. The computing system allocates the respective processing units to perform wireless processing stages associated with a wireless protocol. The BBU and/or the RRH may generate an output data stream based on the mixing of coefficient data with input data at the BBU and/or the RRH. Examples of systems and methods described herein may facilitate the processing of data for 5G wireless communications in a power-efficient and time-efficient manner.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: May 30, 2023
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Fa-Long Luo, Jaime Cummins, Tamara Schmitz, Jeremy Chritz
  • Patent number: 11658687
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of mixing input data with coefficient data. For example, a computing system with processing units may mix the input data for a transmission in a radio frequency (RF) wireless domain with the coefficient data to generate output data that is representative of the transmission being processed according to the wireless protocol in the RF wireless domain. A computing device may be trained to generate coefficient data based on the operations of a wireless transceiver such that mixing input data using the coefficient data generates an approximation of the output data, as if it were processed by the wireless transceiver. Examples of systems and methods described herein may facilitate the processing of data for 5G wireless communications in a power-efficient and time-efficient manner.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: May 23, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Jeremy Chritz, Tamara Schmitz, Fa-Long Luo, Jaime Cummins
  • Publication number: 20230113877
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of full duplex compensation with a self-interference noise calculator that compensates for the self-interference noise generated by power amplifiers at harmonic frequencies of a respective wireless receiver. The self-interference noise calculator may be coupled to antennas of a wireless device and configured to generate the adjusted signals that compensate self-interference. The self-interference noise calculator may include a network of processing elements configured to combine transmission signals into sets of intermediate results. Each set of intermediate results may be summed in the self-interference noise calculator to generate a corresponding adjusted signal.
    Type: Application
    Filed: December 13, 2022
    Publication date: April 13, 2023
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: FA-LONG LUO, JAIME CUMMINS, TAMARA SCHMITZ, JEREMY CHRITZ
  • Publication number: 20230115548
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of cross correlation including symbols indicative of radio frequency (RF) energy. An electronic device including a statistic calculator may be configured to calculate a statistic including the cross-correlation of the symbols. The electronic device may include a comparator configured to provide a signal indicative of a presence or absence of a wireless communication signal in the particular portion of the wireless spectrum based on a comparison of the statistic with a threshold. A decoder/precoder may be configured to receive the signal indicative of the presence or absence of the wireless communication signal and to decode the symbols responsive to a signal indicative of the presence of the wireless communication signal. Examples of systems and methods described herein may facilitate the processing of data for wireless communications in a power-efficient and time-efficient manner.
    Type: Application
    Filed: December 13, 2022
    Publication date: April 13, 2023
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: FA-LONG LUO, TAMARA SCHMITZ, JEREMY CHRITZ, JAIME CUMMINS
  • Publication number: 20230115877
    Abstract: Examples described herein utilize multi-layer neural networks, such as multi-layer recurrent neural networks, to estimate a bit error rate (BER) of encoded data based on a retrieved version of encoded data (e.g., data encoded using one or more encoding techniques) from a memory. The neural networks may have nonlinear mapping and distributed processing capabilities which may be advantageous to estimate a BER of encoded data, e.g., to facilitate decoding of the encoded data. In this manner, neural networks described herein may be used to improve or facilitate aspects of decoding at ECC decoders, e.g., by comparing an estimated BER to a threshold (e.g., a threshold BER level) prior to decoding of the encoded data. For example, an additional NN activation indication may be provided, e.g., to indicate that the encoded data may be decoded or to indicate that error present in the encoded data is to be reduced.
    Type: Application
    Filed: October 7, 2021
    Publication date: April 13, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Jaime Cummins
  • Publication number: 20230073295
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of full duplex compensation with a self interference noise calculator. The self-interference noise calculator may be coupled to antennas of a wireless device and configured to generate adjusted signals that compensate self-interference. The self-interference noise calculator may include a network of processing elements configured to combine transmission signals into sets of intermediate results. Each set of intermediate results may be summed in the self-interference noise calculator to generate a corresponding adjusted signal. The adjusted signal is received by a corresponding wireless receiver to compensate for the self-interference noise generated by a wireless transmitter transmitting on the same frequency band as the wireless receiver is receiving.
    Type: Application
    Filed: August 22, 2022
    Publication date: March 9, 2023
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: FA-LONG LUO, JEREMY CHRITZ, JAIME CUMMINS, TAMARA SCHMITZ
  • Patent number: 11599773
    Abstract: Examples described herein utilize multi-layer neural networks to decode encoded data (e.g., data encoded using one or more encoding techniques). The neural networks have nonlinear mapping and distributed processing capabilities which are advantageous in many systems employing the neural network decoders. In this manner, neural networks described herein are used to implement error code correction (ECC) decoders.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: March 7, 2023
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Fa-Long Luo, Jaime Cummins, Tamara Schmitz
  • Patent number: 11573903
    Abstract: Examples described herein include systems and methods which include an apparatus comprising a memory array including a plurality of memory cells and a memory controller coupled to the memory array. The memory controller comprises a memory mapper configured to configure a memory map on the basis of a memory command associated with a memory access operation. The memory map comprises a specific sequence of memory access instructions to access at least one memory cell of the memory array. For example, the specific sequence of memory access instructions for a diagonal memory command comprises a sequence of memory access instructions that each access a memory cell along a diagonal of the memory array.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: February 7, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Tamara Schmitz, Jeremy Chritz, Jaime Cummins
  • Patent number: 11575548
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of full duplex compensation with a self-interference noise calculator. The self-interference noise calculator may be coupled to antennas of a wireless device and configured to generate adjusted signals that compensate self-interference. The self-interference noise calculator may include a network of processing elements configured to combine transmission signals into sets of intermediate results. Each set of intermediate results may be summed in the self-interference noise calculator to generate a corresponding adjusted signal. The adjusted signal is received by a corresponding wireless receiver to compensate for the self-interference noise generated by a wireless transmitter transmitting on the same frequency band as the wireless receiver is receiving.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: February 7, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Jeremy Chritz, Jaime Cummins, Tamara Schmitz
  • Patent number: 11563449
    Abstract: Examples described herein utilize multi-layer neural networks, such as multi-layer recurrent neural networks to estimate an error-reduced version of encoded data based on a retrieved version of encoded data (e.g., data encoded using one or more encoding techniques) from a memory. The neural networks and/or recurrent neural networks may have nonlinear mapping and distributed processing capabilities which may be advantageous in many systems employing a neural network or recurrent neural network to estimate an error-reduced version of encoded data for an error correction coding (ECC) decoder, e.g., to facilitate decoding of the error-reduced version of encoded data at the decoder. In this manner, neural networks or recurrent neural networks described herein may be used to improve or facilitate aspects of decoding at ECC decoders, e.g., by reducing errors present in encoded data due to storage or transmission.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: January 24, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Jaime Cummins
  • Patent number: 11552658
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of full duplex compensation with a self-interference noise calculator that compensates for the self-interference noise generated by power amplifiers at harmonic frequencies of a respective wireless receiver. The self-interference noise calculator may be coupled to antennas of a wireless device and configured to generate the adjusted signals that compensate self-interference. The self-interference noise calculator may include a network of processing elements configured to combine transmission signals into sets of intermediate results. Each set of intermediate results may be summed in the self-interference noise calculator to generate a corresponding adjusted signal.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: January 10, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Jaime Cummins, Tamara Schmitz, Jeremy Chritz
  • Patent number: 11550500
    Abstract: Methods, systems, and apparatuses related to computational storage are described. For example, storage accessible to an accelerator may be shared between and, accessible to either of, a host and the accelerator. A computational storage system may include storage providing a portion of a shared file system accessible by a host and by accelerator logic of the computational storage system. Host interface logic may be configured to receive a storage command from the host to store data on the storage at a time the data is created. The host interface logic may be further configured to receive a storage command from the host for the accelerator logic to perform a computational task using the stored data on the storage. The accelerator logic can perform the computational task using the stored data on the storage.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: January 10, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Shanyuan Gao, Sen Ma, Moon Mark Hur, Jaime Cummins
  • Publication number: 20230004804
    Abstract: Systems, devices, and methods related to a deep learning accelerator and memory are described. An integrated circuit may be configured with: a central processing unit, a deep learning accelerator configured to execute instructions with matrix operands; random access memory configured to store first instructions of an artificial neural network executable by the deep learning accelerator and second instructions of an application executable by the central processing unit; one or connections among the random access memory, the deep learning accelerator and the central processing unit; and an input/output interface to an external peripheral bus. While the deep learning accelerator is executing the first instructions to convert sensor data according to the artificial neural network to inference results, the central processing unit may execute the application that uses inference results from the artificial neural network.
    Type: Application
    Filed: September 8, 2022
    Publication date: January 5, 2023
    Inventors: Poorna Kale, Jaime Cummins
  • Patent number: 11539502
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of cross correlation including symbols indicative of radio frequency (RF) energy. An electronic device including a statistic calculator may be configured to calculate a statistic including the cross-correlation of the symbols. The electronic device may include a comparator configured to provide a signal indicative of a presence or absence of a wireless communication signal in the particular portion of the wireless spectrum based on a comparison of the statistic with a threshold. A decoder/precoder may be configured to receive the signal indicative of the presence or absence of the wireless communication signal and to decode the symbols responsive to a signal indicative of the presence of the wireless communication signal. Examples of systems and methods described herein may facilitate the processing of data for wireless communications in a power-efficient and time-efficient manner.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: December 27, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Tamara Schmitz, Jeremy Chritz, Jaime Cummins
  • Publication number: 20220398190
    Abstract: Methods, apparatuses, and systems for tensor memory access are described. Multiple data located in different physical addresses of memory may be concurrently read or written by, for example, employing various processing patterns of tensor or matrix related computations. A memory controller, which may comprise a data address generator, may be configured to generate a sequence of memory addresses for a memory access operation based on a starting address and a dimension of a tensor or matrix. At least one dimension of a tensor or matrix may correspond to a row, a column, a diagonal, a determinant, or an Nth dimension of the tensor or matrix. The memory controller may also comprise a buffer configured to read and write the data generated from or according to a sequence of memory of addresses.
    Type: Application
    Filed: August 16, 2022
    Publication date: December 15, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Jaime Cummins, Tamara Schmitz, Jeremy Chritz
  • Patent number: 11528043
    Abstract: Examples described herein include methods, devices, and systems which may compensate input data for non-linear power amplifier noise to generate compensated input data. In compensating the noise, during an uplink transmission time interval (TTI), a switch path is activated to provide amplified input data to a receiver stage including a coefficient calculator. The coefficient calculator may calculate an error representative of the noise based partly on the input signal to be transmitted and a feedback signal to generate coefficient data associated with the power amplifier noise. The feedback signal is provided, after processing through the receiver, to a coefficient calculator. During an uplink TTI, the amplified input data may also be transmitted as the RF wireless transmission via an RF antenna. During a downlink TTI, the switch path may be deactivated and the receiver stage may receive an additional RF wireless transmission to be processed in the receiver stage.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: December 13, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Jeremy Chritz, Jaime Cummins, Tamara Schmitz