Patents by Inventor James B. Hannon

James B. Hannon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9752865
    Abstract: Methods and systems for measuring a distance include measuring a first interference pattern between a lens and a target surface using a light source at a first wavelength. A second interference pattern is measured between the lens and the target surface using a light source at a second wavelength, different from the first wavelength. An absolute measurement of a distance between the lens and the target surface is determined based on the first interference pattern and the second interference pattern.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: September 5, 2017
    Assignee: International Business Machines Corporation
    Inventors: Richard A. Haight, James B. Hannon, Rudolf M. Tromp
  • Publication number: 20170179169
    Abstract: Aspects relate to a system and a method of manufacturing an integrated device. The method includes providing a circuit board, configuring an upper surface of the circuit board as a substrate, integrally depositing photovoltaic device layers that include at least a semi-conductor absorber layer, a buffer layer, and a top electrode layer on the upper surface of the circuit board to form a photovoltaic device using the upper surface of the circuit board as a photovoltaic device substrate, wherein the buffer layer is integrally deposited between the semi-conductor absorber layer and the top electrode, and electrically connecting the photovoltaic device to one or more on-board electronic components.
    Type: Application
    Filed: October 21, 2016
    Publication date: June 22, 2017
    Inventors: Talia S. Gershon, Richard A. Haight, James B. Hannon, Teodor K. Todorov
  • Publication number: 20170176427
    Abstract: Techniques for selective placement of carbon nanotubes using bifunctional acid monolayers are provided. In one aspect, a method for selective placement of carbon nanotubes on a metal oxide surface includes the steps of: dispersing poly-fluorene polymer-wrapped carbon nanotubes in an organic solvent; creating a patterned monolayer of a bifunctional acid on the metal oxide surface, wherein the bifunctional acid comprises a first acid functional group for binding to the metal oxide surface, and a second acid functional group for binding to the poly-fluorene polymer-wrapped carbon nanotubes; and contacting the poly-fluorene polymer-wrapped carbon nanotubes dispersed in the organic solvent with the patterned monolayer of the bifunctional acid on the metal oxide surface to selectively place the carbon nanotubes on the metal oxide surface via the patterned monolayer of the bifunctional acid. A carbon nanotube-based device and method of formation thereof are also provided.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: Ali Afzali-Ardakani, James B. Hannon, George S. Tulevski
  • Publication number: 20170179725
    Abstract: Aspects relate to a system and a method of operating an integrated device is provided. The method includes providing a circuit board that includes one or more on-board electronic components and an upper surface configured as a substrate, providing photovoltaic device layers that include at least a semi-conductor absorber layer, a buffer layer, and a top electrode layer on the upper surface of the circuit board that form a photovoltaic device using the upper surface of the circuit board as a photovoltaic device substrate, wherein the buffer layer is integrally deposited between the semi-conductor absorber layer and the top electrode, generating electricity using the photovoltaic device, and powering one or more of the on-board electronic components using the electricity from the photovoltaic device.
    Type: Application
    Filed: October 21, 2016
    Publication date: June 22, 2017
    Inventors: Talia S. Gershon, Richard A. Haight, James B. Hannon, Teodor K. Todorov
  • Publication number: 20170167929
    Abstract: A force detector and method for using the same includes a lens. A cantilever is below the movable lens. A laser above the movable lens emits a beam of light through the movable lens, such that light reflects from the lens and the cantilever. A camera is configured to capture images produced by the light reflected from the lens and the light reflected from the cantilever. A processor is configured to determine a force between the movable lens and the cantilever based on a change in phase of the interference rings.
    Type: Application
    Filed: February 28, 2017
    Publication date: June 15, 2017
    Inventors: Arthur W. Ellis, Richard A. Haight, James B. Hannon, Rudolf M. Tromp
  • Publication number: 20170117435
    Abstract: A method for forming a back contact on an absorber layer in a photovoltaic device includes forming a two dimensional material on a first substrate. An absorber layer including Cu—Zn—Sn—S(Se) (CZTSSe) is grown over the first substrate on the two dimensional material. A buffer layer is grown on the absorber layer on a side opposite the two dimensional material. The absorber layer is exfoliated from the two dimensional material to remove the first substrate from a backside of the absorber layer opposite the buffer layer. A back contact is deposited on the absorber layer.
    Type: Application
    Filed: January 9, 2017
    Publication date: April 27, 2017
    Inventors: Richard A. Haight, James B. Hannon, Satoshi Oida
  • Patent number: 9625331
    Abstract: A force detector and method for using the same includes a movable lens having a spherical surface; a cantilever below the movable lens; a laser above the movable lens configured to emit a beam of light through the movable lens, such that light reflects from the spherical surface and the cantilever; a camera configured to capture images of interference rings produced by the light reflected from the spherical surface and the light reflected from the cantilever; and a processor configured to determine a force between the movable lens and the cantilever based on a change in phase of the interference rings.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: April 18, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Arthur W. Ellis, Richard A. Haight, James B. Hannon, Rudolf M. Tromp
  • Publication number: 20170104113
    Abstract: A method for forming a back contact on an absorber layer in a photovoltaic device includes forming a two dimensional material on a first substrate. An absorber layer including Cu—Zn—Sn—S(Se) (CZTSSe) is grown over the first substrate on the two dimensional material. A buffer layer is grown on the absorber layer on a side opposite the two dimensional material. The absorber layer is exfoliated from the two dimensional material to remove the first substrate from a backside of the absorber layer opposite the buffer layer. A back contact is deposited on the absorber layer.
    Type: Application
    Filed: October 12, 2015
    Publication date: April 13, 2017
    Inventors: Richard A. Haight, James B. Hannon, Satoshi Oida
  • Publication number: 20170074733
    Abstract: A force detector and method for using the same includes a movable lens having a spherical surface; a cantilever below the movable lens; a laser above the movable lens configured to emit a beam of light through the movable lens, such that light reflects from the spherical surface and the cantilever; a camera configured to capture images of interference rings produced by the light reflected from the spherical surface and the light reflected from the cantilever; and a processor configured to determine a force between the movable lens and the cantilever based on a change in phase of the interference rings.
    Type: Application
    Filed: September 10, 2015
    Publication date: March 16, 2017
    Inventors: Arthur W. Ellis, Richard A. Haight, James B. Hannon, Rudolf M. Tromp
  • Patent number: 9570915
    Abstract: Aspects relate to an integrated system that is electrically powered. The integrated system includes a circuit board and a photovoltaic device. The circuit board includes one or more on-board electronic components and an upper surface configured as a substrate. The photovoltaic device is integrally deposited on the upper surface of the circuit board and electrically connected to the one or more on-board electronic components, wherein the upper surface of the circuit board is a photovoltaic device substrate.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: February 14, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Talia S. Gershon, Richard A. Haight, James B. Hannon, Teodor K. Todorov
  • Patent number: 9472450
    Abstract: Interconnect structures including a graphene cap located on exposed surfaces of a copper structure are provided. In some embodiments, the graphene cap is located only atop the uppermost surface of the copper structure, while in other embodiments the graphene cap is located along vertical sidewalls and atop the uppermost surface of the copper structure. The copper structure is located within a dielectric material.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: October 18, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Griselda Bonilla, Christos D. Dimitrakopoulos, Alfred Grill, James B. Hannon, Qinghuang Lin, Deborah A. Neumayer, Satoshi Oida, John A. Ott, Dirk Pfeiffer
  • Patent number: 9394178
    Abstract: A method for transfer of a two-dimensional material includes forming a spreading layer of a two-dimensional material on a substrate, the spreading layer having a monolayer. A stressor layer is formed on the spreading layer, and the stressor layer is configured to apply stress to a closest monolayer of the spreading layer. The closest monolayer is exfoliated by mechanically splitting the spreading layer wherein the closest monolayer remains on the stressor layer.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: July 19, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Christos D. Dimitrakopoulos, Keith E. Fogel, James B. Hannon, Jeehwan Kim, Hongsik Park, Dirk Pfeiffer, Devendra K. Sadana
  • Patent number: 9203041
    Abstract: A semiconductor device includes a substrate that extends along a first direction to define a length and second direction perpendicular to the first direction to define a height. The substrate includes a dielectric layer and at least one gate stack formed on the dielectric layer. A source contact is formed adjacent to a first side of the gate stack and a drain contact formed adjacent to an opposing second side of the gate stack. A carbon nanotube is formed on the source contact and the drain contact. A first portion of the nanotube forms a source. A second portion forms a drain. A third portion is interposed between the source and drain to define a gate channel that extends along the first direction. The source and the drain extend along the second direction and have a greater length than the gate channel.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: December 1, 2015
    Assignee: International Business Machines Corporation
    Inventors: Shu-Jen Han, Wilfried E. Haensch, James B. Hannon
  • Publication number: 20150336800
    Abstract: A method for transfer of a two-dimensional material includes forming a spreading layer of a two-dimensional material on a substrate, the spreading layer having a monolayer. A stressor layer is formed on the spreading layer, and the stressor layer is configured to apply stress to a closest monolayer of the spreading layer. The closest monolayer is exfoliated by mechanically splitting the spreading layer wherein the closest monolayer remains on the stressor layer.
    Type: Application
    Filed: August 3, 2015
    Publication date: November 26, 2015
    Inventors: STEPHEN W. BEDELL, CHRISTOS D. DIMITRAKOPOULOS, KEITH E. FOGEL, JAMES B. HANNON, JEEHWAN KIM, HONGSIK PARK, DIRK PFEIFFER, DEVENDRA K. SADANA
  • Publication number: 20150221884
    Abstract: A semiconductor device includes a substrate that extends along a first direction to define a length and second direction perpendicular to the first direction to define a height. The substrate includes a dielectric layer and at least one gate stack formed on the dielectric layer. A source contact is formed adjacent to a first side of the gate stack and a drain contact formed adjacent to an opposing second side of the gate stack. A carbon nanotube is formed on the source contact and the drain contact. A first portion of the nanotube forms a source. A second portion forms a drain. A third portion is interposed between the source and drain to define a gate channel that extends along the first direction. The source and the drain extend along the second direction and have a greater length than the gate channel.
    Type: Application
    Filed: January 31, 2014
    Publication date: August 6, 2015
    Applicant: International Business Machines Corporation
    Inventors: Shu-Jen Han, Wilfried E. Haensch, James B. Hannon
  • Patent number: 9096050
    Abstract: A method for transfer of a two-dimensional material includes forming a spreading layer of a two-dimensional material on a substrate, the spreading layer having a monolayer. A stressor layer is formed on the spreading layer, and the stressor layer is configured to apply stress to a closest monolayer of the spreading layer. The closest monolayer is exfoliated by mechanically splitting the spreading layer wherein the closest monolayer remains on the stressor layer.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: August 4, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Christos D. Dimitrakopoulos, Keith E. Fogel, James B. Hannon, Jeehwan Kim, Hongsik Park, Dirk Pfeiffer, Devendra K. Sadana
  • Patent number: 8969115
    Abstract: A transparent conductive electrode stack containing a work function adjusted carbon-containing material is provided. Specifically, the transparent conductive electrode stack includes a layer of a carbon-containing material and a layer of a work function modifying material. The presence of the work function modifying material in the transparent conductive electrode stack shifts the work function of the layer of carbon-containing material to a higher value for better hole injection into the OLED device as compared to a transparent conductive electrode that includes only a layer of carbon-containing material and no work function modifying material.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: March 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Tze-Chiang Chen, James B. Hannon, Ning Li, Satoshi Oida, George S. Tulevski, Devendra K. Sadana
  • Patent number: 8895433
    Abstract: Interconnect structures including a graphene cap located on exposed surfaces of a copper structure are provided. In some embodiments, the graphene cap is located only atop the uppermost surface of the copper structure, while in other embodiments the graphene cap is located along vertical sidewalls and atop the uppermost surface of the copper structure. The copper structure is located within a dielectric material.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: November 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Griselda Bonilla, Christos D. Dimitrakopoulos, Alfred Grill, James B. Hannon, Qinghuang Lin, Deborah A. Neumayer, Satoshi Oida, John A. Ott, Dirk Pfeiffer
  • Patent number: 8859048
    Abstract: The present invention provides a method for selectively placing carbon nanotubes on a substrate surface by using functionalized carbon nanotubes having an organic compound that is covalently bonded to such carbon nanotubes. The organic compound comprises at least two functional groups, the first of which is capable of forming covalent bonds with carbon nanotubes, and the second of which is capable of selectively bonding metal oxides. Such functionalized carbon nanotubes are contacted with a substrate surface that has at least one portion containing a metal oxide. The second functional group of the organic compound selectively bonds to the metal oxide, so as to selectively place the functionalized carbon nanotubes on the at least one portion of the substrate surface that comprises the metal oxide.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: October 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Phaedon Avouris, James B. Hannon, Christian Klinke
  • Publication number: 20140291282
    Abstract: A method for transfer of a two-dimensional material includes forming a spreading layer of a two-dimensional material on a substrate, the spreading layer having a monolayer. A stressor layer is formed on the spreading layer, and the stressor layer is configured to apply stress to a closest monolayer of the spreading layer. The closest monolayer is exfoliated by mechanically splitting the spreading layer wherein the closest monolayer remains on the stressor layer.
    Type: Application
    Filed: April 2, 2013
    Publication date: October 2, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Christos D. Dimitrakopoulos, Keith E. Fogel, James B. Hannon, Jeehwan Kim, Hongsik Park, Dirk Pfeiffer, Devendra K. Sadana