Patents by Inventor James Busby

James Busby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9913370
    Abstract: Tamper-proof electronic packages and fabrication methods are provided which include a glass enclosure enclosing, at least in part, at least one electronic component within a secure volume, and a tamper-respondent detector. The glass enclosure includes stressed glass with a compressively-stressed surface layer, and the tamper-respondent detector monitors, at least in part, the stressed glass to facilitate defining the secure volume. The stressed glass fragments with an attempted intrusion event through the stressed glass, and the tamper-respondent detector detects the fragmenting of the stressed glass. In certain embodiments, the stressed glass may be a machined glass enclosure that has undergone ion-exchange processing, and the compressively-stressed surface layer of the stressed glass may be compressively-stressed to ensure that the stressed glass fragments into glass particles of fragmentation size less than 1000 ?m with the intrusion event.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: March 6, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James A. Busby, Silvio Dragone, Michael J. Fisher, Michael A. Gaynes, David C. Long, Kenneth P. Rodbell, William Santiago-Fernandez, Thomas Weiss
  • Publication number: 20180061196
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include a multi-layer stack having multiple discrete component layers stacked and electrically connected together via a plurality of electrical contacts in between the component layers. Further, the tamper-respondent assembly includes a tamper-respondent electronic circuit structure embedded within the multi-layer stack. The tamper-respondent electronic circuit structure includes at least one tamper-respondent sensor embedded, at least in part, within at least one component layer of the multiple discrete component layers of the multi-layer stack. The tamper-respondent electronic circuit structure defines a secure volume within the multi-layer stack. For instance, the tamper-respondent electronic circuit structure may be fully embedded within the multi-layer stack, with monitor circuitry of the tamper-respondent electronic circuit structure residing within the secure volume within the multi-layer stack.
    Type: Application
    Filed: October 24, 2017
    Publication date: March 1, 2018
    Inventors: James A. BUSBY, Phillip Duane ISAACS, William SANTIAGO-FERNANDEZ
  • Patent number: 9894749
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include at least one tamper-respondent sensor having unexposed circuit lines forming, at least in part, one or more tamper-detect network(s), and the tamper-respondent sensor having at least one external bond region. The tamper-respondent assembly further includes at least one conductive trace and an adhesive. The conductive trace(s) forms, at least in part, the one or more tamper-detect network(s), and is exposed, at least in part, on the tamper-respondent sensor(s) within the external bond region(s). The adhesive contacts the conductive trace(s) within the external bond region(s) of the tamper-respondent sensor(s), and the adhesive, in part, facilitates securing the at least one tamper-respondent sensor within the tamper-respondent assembly. In enhanced embodiments, the conductive trace(s) is a chemically compromisable conductor susceptible to damage during a chemical attack on the adhesive within the external bond region(s).
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: February 13, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William L. Brodsky, James A. Busby, Zachary T. Dreiss, Michael J. Fisher, David C. Long, William Santiago-Fernandez, Thomas Weiss
  • Patent number: 9881880
    Abstract: Tamper-proof electronic packages and fabrication methods are provided which include a glass substrate. The glass substrate is stressed glass with a compressively-stressed surface layer. Further, one or more electronic components are secured to the glass substrate within a secure volume of the tamper-proof electronic package. In operation, the glass substrate is configured to fragment with an attempted intrusion event into the electronic package, and the fragmenting of the glass substrate also fragments the electronic component(s) secured to the glass substrate, thereby destroying the electronic component(s). In certain implementations, the glass substrate has undergone ion-exchange processing to provide the stressed glass.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: January 30, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James A. Busby, Silvio Dragone, Michael A. Gaynes, Kenneth P. Rodbell, William Santiago-Fernandez
  • Patent number: 9877383
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure to circuit board protection. The tamper-respondent assemblies include a circuit board, and an electronic enclosure mounted to the circuit board and facilitating enclosing at least one electronic component within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and the tamper-respondent electronic circuit structure includes a tamper-respondent circuit. An adhesive is provided to secure, in part, the electronic enclosure to the circuit board. The adhesive contacts, at least in part, the tamper-respondent circuit so that an attempted separation of the electronic enclosure from the circuit board causes the adhesive to break the tamper-respondent circuit, facilitating detection of the separation by a monitor circuit of the tamper-respondent electronic circuit structure.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: January 23, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William L. Brodsky, James A. Busby, Edward N. Cohen, Silvio Dragone, Michael J. Fisher, David C. Long, Michael T. Peets, William Santiago-Fernandez, Thomas Weiss
  • Patent number: 9858776
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include at least one tamper-respondent sensor and a detector. The at least one tamper-respondent sensor includes conductive lines which form, at least in part, at least one tamper-detect network of the tamper-respondent sensor(s). The detector monitors the tamper-respondent sensor(s) by applying an electrical signal to the conductive lines of the at least one tamper-respondent sensor to monitor for a non-linear conductivity change indicative of a tamper event at the tamper-respondent sensor(s). For instance, the detector may monitor a second harmonic of the electrical signal applied to the conductive lines for the non-linear conductivity change indicative of the tamper event, such as an attempted shunt of one or more conductive lines of the tamper-respondent sensor(s).
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: January 2, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James A. Busby, Phillip Duane Isaacs
  • Publication number: 20170372570
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include at least one tamper-respondent sensor and a detector. The at least one tamper-respondent sensor includes conductive lines which form, at least in part, at least one tamper-detect network of the tamper-respondent sensor(s). The detector monitors the tamper-respondent sensor(s) by applying an electrical signal to the conductive lines of the at least one tamper-respondent sensor to monitor for a non-linear conductivity change indicative of a tamper event at the tamper-respondent sensor(s). For instance, the detector may monitor a second harmonic of the electrical signal applied to the conductive lines for the non-linear conductivity change indicative of the tamper event, such as an attempted shunt of one or more conductive lines of the tamper-respondent sensor(s).
    Type: Application
    Filed: June 28, 2016
    Publication date: December 28, 2017
    Inventors: James A. BUSBY, Phillip Duane ISAACS
  • Publication number: 20170330844
    Abstract: Tamper-proof electronic packages and fabrication methods are provided which include a glass substrate. The glass substrate is stressed glass with a compressively-stressed surface layer. Further, one or more electronic components are secured to the glass substrate within a secure volume of the tamper-proof electronic package. In operation, the glass substrate is configured to fragment with an attempted intrusion event into the electronic package, and the fragmenting of the glass substrate also fragments the electronic component(s) secured to the glass substrate, thereby destroying the electronic component(s). In certain implementations, the glass substrate has undergone ion-exchange processing to provide the stressed glass.
    Type: Application
    Filed: May 13, 2016
    Publication date: November 16, 2017
    Inventors: James A. BUSBY, Silvio DRAGONE, Michael A. GAYNES, Kenneth P. RODBELL, William SANTIAGO-FERNANDEZ
  • Publication number: 20170332485
    Abstract: Tamper-proof electronic packages and fabrication methods are provided which include a glass enclosure enclosing, at least in part, at least one electronic component within a secure volume, and a tamper-respondent detector. The glass enclosure includes stressed glass with a compressively-stressed surface layer, and the tamper-respondent detector monitors, at least in part, the stressed glass to facilitate defining the secure volume. The stressed glass fragments with an attempted intrusion event through the stressed glass, and the tamper-respondent detector detects the fragmenting of the stressed glass. In certain embodiments, the stressed glass may be a machined glass enclosure that has undergone ion-exchange processing, and the compressively-stressed surface layer of the stressed glass may be compressively-stressed to ensure that the stressed glass fragments into glass particles of fragmentation size less than 1000 ?m with the intrusion event.
    Type: Application
    Filed: May 13, 2016
    Publication date: November 16, 2017
    Inventors: James A. BUSBY, Silvio DRAGONE, Michael J. FISHER, Michael A. GAYNES, David C. LONG, Kenneth P. RODBELL, William SANTIAGO-FERNANDEZ, Thomas WEISS
  • Publication number: 20170249813
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include a multi-layer stack having multiple discrete component layers stacked and electrically connected together via a plurality of electrical contacts in between the component layers. Further, the tamper-respondent assembly includes a tamper-respondent electronic circuit structure embedded within the multi-layer stack. The tamper-respondent electronic circuit structure includes at least one tamper-respondent sensor embedded, at least in part, within at least one component layer of the multiple discrete component layers of the multi-layer stack. The tamper-respondent electronic circuit structure defines a secure volume within the multi-layer stack. For instance, the tamper-respondent electronic circuit structure may be fully embedded within the multi-layer stack, with monitor circuitry of the tamper-respondent electronic circuit structure residing within the secure volume within the multi-layer stack.
    Type: Application
    Filed: February 25, 2016
    Publication date: August 31, 2017
    Inventors: James A. BUSBY, Phillip Duane ISAACS, William SANTIAGO-FERNANDEZ
  • Publication number: 20170181274
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure to circuit board protection. The tamper-respondent assemblies include a circuit board, and an electronic enclosure mounted to the circuit board and facilitating enclosing at least one electronic component within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and the tamper-respondent electronic circuit structure includes a tamper-respondent circuit. An adhesive is provided to secure, in part, the electronic enclosure to the circuit board. The adhesive contacts, at least in part, the tamper-respondent circuit so that an attempted separation of the electronic enclosure from the circuit board causes the adhesive to break the tamper-respondent circuit, facilitating detection of the separation by a monitor circuit of the tamper-respondent electronic circuit structure.
    Type: Application
    Filed: February 3, 2017
    Publication date: June 22, 2017
    Inventors: William L. BRODSKY, James A. BUSBY, Edward N. COHEN, Silvio DRAGONE, Michael J. FISHER, David C. LONG, Michael T. PEETS, William SANTIAGO-FERNANDEZ, Thomas WEISS
  • Patent number: 9661747
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure to circuit board protection. The tamper-respondent assemblies include a circuit board, and an electronic enclosure mounted to the circuit board and facilitating enclosing at least one electronic component within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and the tamper-respondent electronic circuit structure includes a tamper-respondent circuit. An adhesive is provided to secure, in part, the electronic enclosure to the circuit board. The adhesive contacts, at least in part, the tamper-respondent circuit so that an attempted separation of the electronic enclosure from the circuit board causes the adhesive to break the tamper-respondent circuit, facilitating detection of the separation by a monitor circuit of the tamper-respondent electronic circuit structure.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: May 23, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William L. Brodsky, James A. Busby, Edward N. Cohen, Silvio Dragone, Michael J. Fisher, David C. Long, Michael T. Peets, William Santiago-Fernandez, Thomas Weiss
  • Publication number: 20170108543
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include a tamper-respondent electronic circuit structure. The tamper-respondent electronic circuit structure includes, for instance, a tamper-respondent sensor having at least one flexible layer and paired conductive lines disposed on the at least one flexible layer. The paired conductive lines form, at least in part, at least one tamper-detect network of the tamper-respondent sensor. The tamper-respondent electronic circuit structure further includes monitor circuitry electrically connected to the paired conductive lines to differentially monitor the paired conductive lines for a tamper event. In enhanced embodiments, multiple interconnect vias electrically connect to two or more layers of paired conductive lines and are disposed in an unfolded interconnect area of the tamper-respondent sensor when the sensor is operatively positioned about an electronic component or assembly to be protected.
    Type: Application
    Filed: October 19, 2015
    Publication date: April 20, 2017
    Inventors: William L. BRODSKY, James A. BUSBY, Edward N. COHEN, Phillip Duane ISAACS
  • Publication number: 20170111998
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include a tamper-respondent electronic circuit structure. The tamper-respondent electronic circuit structure includes, for instance, a tamper-respondent sensor having at least one flexible layer and paired conductive lines disposed on the at least one flexible layer. The paired conductive lines form, at least in part, at least one tamper-detect network of the tamper-respondent sensor. The tamper-respondent electronic circuit structure further includes monitor circuitry electrically connected to the paired conductive lines to differentially monitor the paired conductive lines for a tamper event. In enhanced embodiments, multiple interconnect vias electrically connect to two or more layers of paired conductive lines and are disposed in an unfolded interconnect area of the tamper-respondent sensor when the sensor is operatively positioned about an electronic component or assembly to be protected.
    Type: Application
    Filed: June 20, 2016
    Publication date: April 20, 2017
    Inventors: William L. BRODSKY, James A. BUSBY, Edward N. COHEN, Phillip Duane ISAACS
  • Publication number: 20170094778
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include at least one tamper-respondent sensor having unexposed circuit lines forming, at least in part, one or more tamper-detect network(s), and the tamper-respondent sensor having at least one external bond region. The tamper-respondent assembly further includes at least one conductive trace and an adhesive. The conductive trace(s) forms, at least in part, the one or more tamper-detect network(s), and is exposed, at least in part, on the tamper-respondent sensor(s) within the external bond region(s). The adhesive contacts the conductive trace(s) within the external bond region(s) of the tamper-respondent sensor(s), and the adhesive, in part, facilitates securing the at least one tamper-respondent sensor within the tamper-respondent assembly. In enhanced embodiments, the conductive trace(s) is a chemically compromisable conductor susceptible to damage during a chemical attack on the adhesive within the external bond region(s).
    Type: Application
    Filed: September 25, 2015
    Publication date: March 30, 2017
    Inventors: William L. BRODSKY, James A. BUSBY, Zachary T. DREISS, Michael J. FISHER, David C. LONG, William SANTIAGO-FERNANDEZ, Thomas WEISS
  • Publication number: 20170094820
    Abstract: Methods of fabricating tamper-respondent assemblies with bond protection are provided which include at least one tamper-respondent sensor having unexposed circuit lines forming, at least in part, one or more tamper-detect network(s), and the tamper-respondent sensor having at least one external bond region. The tamper-respondent assembly further includes at least one conductive trace and an adhesive. The conductive trace(s) forms, at least in part, the one or more tamper-detect network(s), and is exposed, at least in part, on the tamper-respondent sensor(s) within the external bond region(s). The adhesive contacts the conductive trace(s) within the external bond region(s) of the tamper-respondent sensor(s), and the adhesive, in part, facilitates securing the at least one tamper-respondent sensor within the tamper-respondent assembly.
    Type: Application
    Filed: November 16, 2015
    Publication date: March 30, 2017
    Inventors: William L. BRODSKY, James A. BUSBY, Zachary T. DREISS, Michael J. FISHER, David C. LONG, William SANTIAGO-FERNANDEZ, Thomas WEISS
  • Publication number: 20170094806
    Abstract: Methods of fabricating tamper-respondent assemblies are provided which include a tamper-respondent electronic circuit structure. The tamper-respondent electronic circuit structure includes a tamper-respondent sensor. The tamper-respondent sensor includes, for instance, at least one flexible layer having opposite first and second sides, and circuit lines forming at least one resistive network. The circuit lines are disposed on at least one of the first or second side of the at least one flexible layer, and have a line width Wl?200 ?m, as well as a line-to-line spacing width Ws?200 ?m. In certain enhanced embodiments, the tamper-respondent sensor includes multiple flexible layers, with a first flexible layer having first circuit lines, and a second flexible layer having second circuit lines, where the first and second circuit lines may have different line widths, different line-to-line spacings, and/or be formed of different materials.
    Type: Application
    Filed: November 16, 2015
    Publication date: March 30, 2017
    Inventors: William L. BRODSKY, James A. BUSBY, Phillip Duane ISAACS, David C. LONG
  • Publication number: 20170094784
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include a tamper-respondent electronic circuit structure. The tamper-respondent electronic circuit structure includes a tamper-respondent sensor. The tamper-respondent sensor includes, for instance, at least one flexible layer having opposite first and second sides, and circuit lines forming at least one resistive network. The circuit lines are disposed on at least one of the first or second side of the at least one flexible layer, and have a line width Wl?200 ?m, as well as a line-to-line spacing width Ws?200 ?m. In certain enhanced embodiments, the tamper-respondent sensor includes multiple flexible layers, with a first flexible layer having first circuit lines, and a second flexible layer having second circuit lines, where the first and second circuit lines may have different line widths, different line-to-line spacings, and/or be formed of different materials.
    Type: Application
    Filed: September 25, 2015
    Publication date: March 30, 2017
    Inventors: William L. BRODSKY, James A. BUSBY, Phillip Duane ISAACS, David C. LONG
  • Patent number: 9554477
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure to circuit board protection. The tamper-respondent assemblies include a circuit board, and an electronic enclosure mounted to the circuit board and facilitating enclosing at least one electronic component within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and the tamper-respondent electronic circuit structure includes a tamper-respondent circuit. An adhesive is provided to secure, in part, the electronic enclosure to the circuit board. The adhesive contacts, at least in part, the tamper-respondent circuit so that an attempted separation of the electronic enclosure from the circuit board causes the adhesive to break the tamper-respondent circuit, facilitating detection of the separation by a monitor circuit of the tamper-respondent electronic circuit structure.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: January 24, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William L. Brodsky, James A. Busby, Edward N. Cohen, Silvio Dragone, Michael J. Fisher, David C. Long, Michael T. Peets, William Santiago-Fernandez, Thomas Weiss
  • Patent number: 8197612
    Abstract: Semiconductor packaging techniques are provided which optimize metallurgical properties of a joint using dissimilar solders. A solder composition for Controlled Collapse Chip Connection processing includes a combination of a tin based lead free solder component designed for a chip and a second solder component designed for a laminate. The total concentration of module Ag after reflow is less than 1.9% by weight. A method of manufacturing a solder component is also provided.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: June 12, 2012
    Assignee: International Business Machines Corporation
    Inventors: James A Busby, Minhua Lu, Valerie A Oberson, Eric D Perfecto, Kamalesh K Srivastava, Brian R Sundlof, Julien Sylvestre, Renee L Weisman