Patents by Inventor James G. Schroth

James G. Schroth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10574122
    Abstract: A method of forming a rotor includes isolating a bridge area of an electrical steel lamination. The bridge area is disposed between a first portion of the electrical steel lamination and a second portion of the electrical steel lamination that is adjacent to the first portion. Each of the first portion, the second portion, and the bridge area has an initial hardness, and the electrical steel lamination has an initial magnetic permeability. After isolating, the method includes hardening only the bridge area so that the bridge area has a treated hardness that is greater than the initial hardness. Concurrent to hardening, the method includes decreasing the initial magnetic permeability at only the bridge area.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: February 25, 2020
    Assignee: GM Global Technology Operations LLC
    Inventors: Thomas A. Perry, James G. Schroth, Sean R. Wagner
  • Patent number: 10532420
    Abstract: A method of joining together adjacent overlapping copper workpieces by way of resistance spot welding involves providing a workpiece stack-up that includes a first copper workpiece and a second copper workpiece that lies adjacent to the first copper workpiece. The faying surface of the first copper workpiece includes a projection that ascends beyond a surrounding base surface of the faying surface and makes contact, either directly or indirectly, with an opposed faying surface of the second copper workpiece. Once provided, a compressive force is applied against the first and second copper workpieces and an electric current is passed momentarily through the first and second copper workpieces. The electric current initially flows through the projection to generate and concentrate heat within the projection prior to the projection collapsing. This concentrated heat surge allows a metallurgical joint to be established between the first and second copper workpieces.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: January 14, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: James G. Schroth, Thomas A. Perry, Hongliang Wang
  • Publication number: 20190363328
    Abstract: A welded assembly and a method of reaction metallurgical welding are disclosed. The assembly includes a first metallic workpiece and a second metallic workpiece attached together by at least two overlapping weld joints. The overlapping weld joints are reaction metallurgically joined (RMJ) weld joints, and each overlapping weld joint overlaps with the other overlapping weld joint by 10-75%. The method of welding includes providing a reactive material between and in contact with the first and second workpieces. In a first position, the workpieces and the reactive material are pressed together, heated, and held between first and second tools to form a first RMJ weld joint between the workpieces. Then, in a second position, the workpieces are pressed together, heated, and held between the tools to form a second RMJ weld joint that overlaps with the first RMJ weld joint.
    Type: Application
    Filed: May 22, 2018
    Publication date: November 28, 2019
    Inventors: Hongliang Wang, Sean R. Wagner, Ryan C. Sekol, James G. Schroth
  • Publication number: 20190296316
    Abstract: A stack assembly having a battery tab with a localized weld and method of making the same is disclosed. The assembly is made by a process including the steps of arranging a plurality of battery tabs into a stack assembly; providing a resistive coating on at least one of the interior surfaces and the exterior surfaces of the battery tabs; and resistive heating the stack assembly. The resistive coating is a nickel-phosphorous (Ni—P) alloy containing 5 to 7 weight percent phosphorus. Resistive heating includes reacting the Ni—P alloy with an electric current to generate concentrated heat localized between adjacent battery tabs such that the Ni—P alloy undergoes solid-state bonding with the Cu in the first batter tab.
    Type: Application
    Filed: March 26, 2018
    Publication date: September 26, 2019
    Inventors: Hongliang Wang, Sean R. Wagner, Ryan C. Sekol, James G. Schroth
  • Patent number: 10335892
    Abstract: A welding electrode for use in resistance spot welding an assembly of overlying metal workpieces that includes an aluminum alloy workpiece is disclosed. The welding electrode includes a body, a convex weld face at one end of the body, and ringed protrusions that project outwardly from the convex weld face. The ringed protrusions are positioned to make contact with, and indent into, a surface of the aluminum alloy workpiece when the convex weld face is pressed against the aluminum alloy workpiece during a spot welding event. When brought into contact with the surface of the aluminum alloy workpiece, the ringed protrusions disrupt the oxide film present on the aluminum alloy workpiece surface, which improves the spot welding process.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: July 2, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David R. Sigler, James G. Schroth, Michael J. Karagoulis
  • Publication number: 20190105728
    Abstract: A resistance spot welding method may involve spot welding a workpiece stack-up that includes a steel workpiece and an aluminum alloy workpiece. A pair of opposed welding electrodes are pressed against opposite sides of the workpiece stack-up with one welding electrode contacting the aluminum alloy workpiece and the other welding electrode contacting the steel workpiece. The welding electrodes are constructed so that, when an electrical current is passed between the electrodes and through the workpiece stack-up, the electrical current has a greater current density in the steel workpiece than in the aluminum alloy workpiece to thereby concentrate heat within a smaller zone in the steel workpiece. Concentrating heat within a smaller zone in the steel workpiece is believed to modify the solidification behavior of the resultant molten aluminum alloy weld pool in a desirable way.
    Type: Application
    Filed: December 6, 2018
    Publication date: April 11, 2019
    Inventors: David R. Sigler, James G. Schroth, Blair E. Carlson, Yelena Myasnikova, David Yang
  • Patent number: 10240222
    Abstract: A method of joining a first metal workpiece substrate and a second metal workpiece substrate by way of reaction metallurgical joining involves passing a pulsating DC electrical current through the metal workpiece substrates and a reaction material disposed between confronting faying surfaces of the workpiece substrates. The electrical current comprises a plurality of current pulses that generally increase in applied current level.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: March 26, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: James G. Schroth, Thomas A. Perry
  • Publication number: 20190076953
    Abstract: A method of joining together adjacent overlapping copper workpieces by way of resistance spot welding involves providing a workpiece stack-up that includes a first copper workpiece and a second copper workpiece that lies adjacent to the first copper workpiece. The faying surface of the first copper workpiece includes a projection that ascends beyond a surrounding base surface of the faying surface and makes contact, either directly or indirectly, with an opposed faying surface of the second copper workpiece. Once provided, a compressive force is applied against the first and second copper workpieces and an electric current is passed momentarily through the first and second copper workpieces. The electric current initially flows through the projection to generate and concentrate heat within the projection prior to the projection collapsing. This concentrated heat surge allows a metallurgical joint to be established between the first and second copper workpieces.
    Type: Application
    Filed: September 12, 2017
    Publication date: March 14, 2019
    Inventors: James G. Schroth, Thomas A. Perry, Hongliang Wang
  • Patent number: 10213878
    Abstract: An arc welding/brazing process is disclosed that is useful to join together a first copper piece and a second copper piece without damaging more heat-sensitive materials that may be located nearby is disclosed. The arc welding/brazing process includes using a non-consumable electrode wire, which electrically communicates with a weld control in a straight polarity orientation, to strike an arc across a gap established between a leading tip end of the electrode wire and the first copper piece. The current that flows through the arc when the arc is established heats the first copper piece such that the first copper piece becomes joined to a second copper piece. The joint between the first copper piece and the second copper piece may be an autogenous weld joint or a braze joint.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: February 26, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: James G. Schroth, Thomas A. Perry, John S. Agapiou, Ronald M. Lesperance
  • Publication number: 20190006920
    Abstract: A rotor for an induction motor includes a first shorting end ring, a second shorting end ring, and a plurality of conductor bars. Each conductor bar has a first end and a second end and is coated with an electrically conductive material. The first end of each conductor bar is in electrical and mechanical contact with the first shorting end ring, and the second end of each conductor bar is in electrical and mechanical contact with the second shorting end ring. The conductive material is disposed between each conductor bar and the respective shorting end rings.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 3, 2019
    Inventors: John S. Agapiou, Thomas A. Perry, James G. Schroth, Hongliang Wang, Michael P. Balogh
  • Patent number: 10166627
    Abstract: A resistance spot welding method may involve spot welding a workpiece stack-up that includes a steel workpiece and an aluminum alloy workpiece that overlap one another to provide a faying interface. A pair of opposed welding electrodes are pressed against opposite sides of the workpiece stack-up with one welding electrode contacting the aluminum alloy workpiece and the other welding electrode contacting the steel workpiece. The welding electrodes are constructed so that, when an electrical current is passed between the electrodes and through the workpiece stack-up, the electrical current has a greater current density in the steel workpiece than in the aluminum alloy workpiece to thereby concentrate heat within a smaller zone in the steel workpiece. Concentrating heat within a smaller zone in the steel workpiece is believed to modify the solidification behavior of the resultant molten aluminum alloy weld pool in a desirable way.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: January 1, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: David R. Sigler, James G. Schroth, Blair E. Carlson, Yelena Myasnikova, David Yang
  • Publication number: 20180272457
    Abstract: A method of spot welding a workpiece stack-up that includes a steel workpiece and an aluminum alloy workpiece involves passing an electrical current through the workpieces and between welding electrodes that are constructed to affect the current density of the electrical current. The welding electrodes, more specifically, are constructed to render the density of the electrical current greater in the steel workpiece than in the aluminum alloy workpiece. This difference in current densities can be accomplished by passing, at least initially, the electrical current between a weld face of the welding electrode in contact with the steel workpiece and a perimeter region of a weld face of the welding electrode in contact with the aluminum alloy workpiece.
    Type: Application
    Filed: May 30, 2018
    Publication date: September 27, 2018
    Inventors: David Yang, David R. Sigler, Blair E. Carlson, James G. Schroth, Michael J. Karagoulis
  • Patent number: 10036083
    Abstract: A method of pre-placing a reaction material onto a surface of a metal workpiece substrate involves the use of oscillating wire arc welding. The method involves depositing and adhering the reaction material from a consumable electrode rod. In doing so, the reaction material can be deposited at any time before the metal workpiece substrate is ready for joining by reaction metallurgical joining, and the size and shape of the reaction material deposit can be more easily controlled.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: July 31, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: James G. Schroth, Thomas A. Perry, Chen Zhou
  • Publication number: 20180198352
    Abstract: A method of forming a rotor includes isolating a bridge area of an electrical steel lamination. The bridge area is disposed between a first portion of the electrical steel lamination and a second portion of the electrical steel lamination that is adjacent to the first portion. Each of the first portion, the second portion, and the bridge area has an initial hardness, and the electrical steel lamination has an initial magnetic permeability. After isolating, the method includes hardening only the bridge area so that the bridge area has a treated hardness that is greater than the initial hardness. Concurrent to hardening, the method includes decreasing the initial magnetic permeability at only the bridge area.
    Type: Application
    Filed: January 12, 2017
    Publication date: July 12, 2018
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Thomas A. Perry, James G. Schroth, Sean R. Wagner
  • Patent number: 10010966
    Abstract: A method of spot welding a workpiece stack-up that includes a steel workpiece and an aluminum alloy workpiece involves passing an electrical current through the workpieces and between welding electrodes that are constructed to affect the current density of the electrical current. The welding electrodes, more specifically, are constructed to render the density of the electrical current greater in the steel workpiece than in the aluminum alloy workpiece. This difference in current densities can be accomplished by passing, at least initially, the electrical current between a weld face of the welding electrode in contact with the steel workpiece and a perimeter region of a weld face of the welding electrode in contact with the aluminum alloy workpiece.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: July 3, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David S. Yang, David R. Sigler, Blair E. Carlson, James G. Schroth, Michael J. Karagoulis
  • Publication number: 20180085855
    Abstract: A method of forming a weld interface between a first workpiece and a second workpiece includes arranging a reactive braze material at a first joining surface of the first workpiece. The reactive material is selected to react upon being heated to a temperature below the solidus temperature of the first and second workpieces to form a liquid-containing reaction product. Furthermore, an assembly is prepared of the first workpiece and the second workpiece with the first joining surface of the first workpiece and a second joining surface of the second workpiece separated by the reactive material. The second workpiece is then heated with a first laser beam following a first path and with a second laser beam following a second path.
    Type: Application
    Filed: September 23, 2016
    Publication date: March 29, 2018
    Inventors: James G. SCHROTH, Thomas A. PERRY, Hongliang WANG, Chen ZHOU
  • Patent number: 9925617
    Abstract: Spot welding electrodes with generally dome shaped welding faces are provided with surface features for welding both aluminum alloy sheet assemblies and steel sheet assemblies. A raised circular plateau is formed on the central axis of the dome and, in one embodiment, a suitable number of round bumps are formed in concentric spacing from adjacent the circumference of the plateau toward the circular edge of the welding face. For welding steel workpieces the plateau mainly serves as the engaging feature of the electrode. Both the plateau and concentric bumps are used in penetrating light metal surfaces for suitable current passage. In another embodiment, the domed surface is shaped with concentric terraces for engagement with the workpieces.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: March 27, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David R. Sigler, James G. Schroth, Michael J. Karagoulis
  • Patent number: 9866092
    Abstract: A method of forming a rotor includes inserting a conductor bar into a slot defined by a lamination stack to define a gap between the conductor bar and the lamination stack. The method further includes, after inserting, swelling the conductor bar within the slot to fill the gap and form the rotor. A rotor is also disclosed.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: January 9, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael D. Hanna, James G. Schroth, John S. Agapiou, John C. Morgante
  • Patent number: 9839971
    Abstract: A method of resistance spot welding a steel workpiece to an aluminum or aluminum alloy workpiece involves providing a workpiece stack-up that includes a steel workpiece and an aluminum workpiece and preheating the welding electrode that is meant to contact the aluminum or aluminum alloy workpiece. The method further involves pressing the preheated welding electrode and another welding electrode against opposite sides of the workpiece stack-up, with the preheated welding electrode abutting the aluminum or aluminum alloy workpiece, and passing an electrical current between the two welding electrodes at a weld site to initiate and grow a molten weld pool within the aluminum or aluminum alloy workpiece.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: December 12, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: James G. Schroth, David R. Sigler, Thomas A. Perry
  • Publication number: 20170297135
    Abstract: A method of resistance spot welding a steel workpiece and an aluminum or aluminum alloy workpiece, and a welding electrode used therein. In one step of the method a workpiece stack-up is provided. The workpiece stack-up includes a steel workpiece and an aluminum or aluminum alloy workpiece. Another step of the method involves contacting the aluminum or aluminum alloy workpiece with a weld face of the welding electrode. The welding electrode has a body and an insert. The insert is composed of a material having an electrical resistivity that is greater than an electrical resistivity of the material of the body. The weld face has a first section defined by a surface of the insert and has a second section defined by a surface of the body. Both the first and second sections make surface-to-surface contact with the aluminum or aluminum alloy workpiece amid resistance spot welding.
    Type: Application
    Filed: April 13, 2016
    Publication date: October 19, 2017
    Inventors: David R. Sigler, Blair E. Carlson, James G. Schroth, David S. Yang, Anil K. Sachdev