Patents by Inventor James J. Cordingley

James J. Cordingley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9304090
    Abstract: A system is disclosed for repairing liquid crystal display panels that include a polarizing film. The system includes a laser repair optical system, a measurement optical system, and a processor. The laser repair optical system includes a polarization unit for modifying a polarization of a laser repair beam along a laser output path that is directed toward a workpiece. The measurement optical system includes an illumination source for providing measurement illumination along a measurement illumination path, and a detector for detecting reflected measurement illumination. The processor adjusts the polarization unit responsive to the reflected measurement illumination.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: April 5, 2016
    Assignee: Electro Scientific Industries, Inc.
    Inventor: James J. Cordingley
  • Publication number: 20140256205
    Abstract: A system is disclosed for repairing liquid crystal display panels that include a polarizing film. The system includes a laser repair optical system, a measurement optical system, and a processor. The laser repair optical system includes a polarization unit for modifying a polarization of a laser repair beam along a laser output path that is directed toward a workpiece. The measurement optical system includes an illumination source for providing measurement illumination along a measurement illumination path, and a detector for detecting reflected measurement illumination. The processor adjusts the polarization unit responsive to the reflected measurement illumination.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: Electro Scientific Industries, Inc.
    Inventor: James J. Cordingley
  • Patent number: 8809734
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: August 19, 2014
    Assignee: Electron Scientific Industries, Inc.
    Inventors: James J. Cordingley, Jonathan S. Ehrmann, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Publication number: 20130200050
    Abstract: The present invention relates to the field of laser processing methods and systems, and specifically, to laser processing methods and systems for laser processing multi-material devices. Systems and methods may utilize high speed deflectors to improve processing energy window and/or improve processing speed. In some embodiments, a deflector is used for non-orthogonal scanning of beam spots. In some embodiment, a deflector is used to implement non-synchronous processing of target structures.
    Type: Application
    Filed: September 10, 2012
    Publication date: August 8, 2013
    Applicant: GSI GROUP CORPORATION
    Inventors: Jonathan S. Ehrmann, Joseph J. Griffiths, James J. Cordingley, Donald J. Svetkoff, Shepard D. Johnson, Michael Plotkin
  • Patent number: 8379204
    Abstract: A method makes a discrete adjustment to static alignment of a laser beam in a machine for selectively irradiating conductive links on or within a semiconductor substrate using the laser beam. The laser beam propagates along a beam path having an axis extending from a laser to a laser beam spot at a location on or within the semiconductor substrate. The method generates, based on at least one measured characteristic of the laser beam, at least one signal to control an adjustable optical element of the machine affecting the laser beam path. The method also sends said at least one signal to the adjustable optical element. The method then adjusts the adjustable optical element in response to said at least one signal so as to improve static alignment of the laser beam path axis.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: February 19, 2013
    Assignee: GSI Group Corporation
    Inventors: James J. Cordingley, Michael Plotkin, John Keefe
  • Publication number: 20120276754
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Application
    Filed: July 3, 2012
    Publication date: November 1, 2012
    Applicant: GSI GROUP CORPORATION
    Inventors: James J. Cordingley, Jonathan S. Ehrmann, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Publication number: 20120241427
    Abstract: A method of processing material of device elements by laser interaction is disclosed. According to one aspect, the method includes generating a pulsed laser processing output along a laser beam axis, the output including a plurality of laser pulses triggered sequentially at times determined by a pulse repetition rate. A trajectory relative to locations of device elements to be processed is generated. A position of one or more designated device elements relative to an intercept point position on the trajectory at one or more laser pulse times is determined, and a laser beam is deflected based on the predicted position within a predetermined deflection range. According to some aspects, the predetermined deflection range may correspond to a compass rose or cruciform field shape. As a result, a deflection accuracy for laser processing may be improved.
    Type: Application
    Filed: February 24, 2012
    Publication date: September 27, 2012
    Applicant: GSI Group Corporation
    Inventors: Dimitry Maltsev, Dmitry N. Romashko, Michael Plotkin, Jonathan S. Ehrmann, James J. Cordingley
  • Patent number: 8269137
    Abstract: The present invention relates to the field of laser processing methods and systems, and specifically, to laser processing methods and systems for laser processing multi-material devices. Systems and methods may utilize high speed deflectors to improve processing energy window and/or improve processing speed. In some embodiments, a deflector is used for non-orthogonal scanning of beam spots. In some embodiment, a deflector is used to implement non-synchronous processing of target structures.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: September 18, 2012
    Assignee: GSI Group Corporation
    Inventors: Jonathan S. Ehrmann, Joseph J. Griffiths, James J. Cordingley, Donald J. Svetkoff, Shepard D. Johnson, Michael Plotkin
  • Patent number: 8253066
    Abstract: Laser-based methods and systems for removing one or more target link structures of a circuit fabricated on a substrate includes generating a pulsed laser output at a predetermined wavelength less than an absorption edge of the substrate are provided. The laser output includes at least one pulse having a pulse duration in the range of about 10 picoseconds to less than 1 nanosecond, the pulse duration being within a thermal laser processing range. The method also includes delivering and focusing the laser output onto the target link structure. The focused laser output has sufficient power density at a location within the target link structure to reduce the reflectivity of the target link structure and efficiently couple the focused laser output into the target link structure to remove the target link structure without damaging the substrate.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: August 28, 2012
    Assignee: GSI Group Corporation
    Inventors: Bo Gu, Donald V. Smart, James J. Cordingley, Joohan Lee, Donald J. Svetkoff, Shepard D. Johnson, Jonathan S. Ehrmann
  • Patent number: 8217304
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: July 10, 2012
    Assignee: GSI Group Corporation
    Inventors: James J. Cordingley, Jonathan S. Ehrmann, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Patent number: 8193468
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: June 5, 2012
    Assignee: GSI Group Corporation
    Inventors: James J. Cordingley, Joseph J. Griffiths, Donald V. Smart
  • Publication number: 20110210105
    Abstract: Link processing systems and methods use controlled two dimensional deflection of a beam along an optical axis trajectory to process links positioned along and transverse to the trajectory during a pass of the optical axis along the trajectory. Predictive position calculations allow link blowing accuracy during constant velocity and accelerating trajectories.
    Type: Application
    Filed: December 22, 2010
    Publication date: September 1, 2011
    Applicant: GSI GROUP CORPORATION
    Inventors: Dmitry N. Romashko, Michael Plotkin, Jonathan S. Ehrmann, James J. Cordingley, Shepard D. Johnson
  • Patent number: 7955906
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: June 7, 2011
    Assignee: GSI Group Corporation
    Inventors: James J. Cordingley, Jonathan S. Ehrman, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Patent number: 7955905
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: June 7, 2011
    Assignee: GSI Group Corporation
    Inventors: James J. Cordingley, Jonathan S. Ehrmann, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Publication number: 20110062127
    Abstract: Laser-based methods and systems for removing one or more target link structures of a circuit fabricated on a substrate includes generating a pulsed laser output at a predetermined wavelength less than an absorption edge of the substrate are provided. The laser output includes at least one pulse having a pulse duration in the range of about 10 picoseconds to less than 1 nanosecond, the pulse duration being within a thermal laser processing range. The method also includes delivering and focusing the laser output onto the target link structure. The focused laser output has sufficient power density at a location within the target link structure to reduce the reflectivity of the target link structure and efficiently couple the focused laser output into the target link structure to remove the target link structure without damaging the substrate.
    Type: Application
    Filed: November 19, 2010
    Publication date: March 17, 2011
    Applicant: GSI GROUP CORPORATION
    Inventors: Bo Gu, Donald V. Smart, James J. Cordingley, Joohan Lee, Donald J. Svetkoff, Shepard D. Johnson, Jonathan S. Ehrmann
  • Patent number: 7838794
    Abstract: Laser-based methods and systems for removing one or more target link structures of a circuit fabricated on a substrate includes generating a pulsed laser output at a predetermined wavelength less than an absorption edge of the substrate are provided. The laser output includes at least one pulse having a pulse duration in the range of about 10 picoseconds to less than 1 nanosecond, the pulse duration being within a thermal laser processing range. The method also includes delivering and focusing the laser output onto the target link structure. The focused laser output has sufficient power density at a location within the target link structure to reduce the reflectivity of the target link structure and efficiently couple the focused laser output into the target link structure to remove the target link structure without damaging the substrate.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: November 23, 2010
    Assignee: GSI Group Corporation
    Inventors: Bo Gu, Donald V. Smart, James J. Cordingley, Joohan Lee, Donald J. Svetkoff, Shepard D. Johnson, Jonathan S. Ehrmann
  • Patent number: 7723642
    Abstract: A laser-based method of removing a target link structure of a circuit fabricated on a substrate includes generating a pulsed laser output at a pre-determined wavelength less than an absorption edge of the substrate. The laser output includes at least one pulse having a pulse duration in the range of about 10 picoseconds to less than 1 nanosecond, the pulse duration being within a thermal laser processing range. The method also includes delivering and focusing the laser output onto the target link structure. The focused laser output has sufficient power density at a location within the target structure to reduce the reflectivity of the target structure and efficiently couple the focused laser output into the target structure to remove the link without damaging the substrate.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: May 25, 2010
    Assignee: GSI Group Corporation
    Inventors: Bo Gu, Donald V. Smart, James J. Cordingley, Joohan Lee, Donald J. Svetkoff, Shepard D. Johnson, Jonathan S. Ehrmann
  • Publication number: 20090095722
    Abstract: The present invention relates to the field of laser processing methods and systems, and specifically, to laser processing methods and systems for laser processing multi-material devices. Systems and methods may utilize high speed deflectors to improve processing energy window and/or improve processing speed. In some embodiments, a deflector is used for non-orthogonal scanning of beam spots. In some embodiment, a deflector is used to implement non-synchronous processing of target structures.
    Type: Application
    Filed: September 18, 2008
    Publication date: April 16, 2009
    Applicant: GSI GROUP CORPORATION
    Inventors: Jonathan S. Ehrmann, Joseph J. Griffiths, James J. Cordingley, Donald J. Svetkoff, Shepard D. Johnson, Michael Plotkin
  • Publication number: 20080284837
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Application
    Filed: July 1, 2008
    Publication date: November 20, 2008
    Applicant: GSI Group Corporation
    Inventors: James J. Cordingley, Jonathan S. Ehrmann, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Patent number: 7394476
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: July 1, 2008
    Assignee: GSI Group Corporation
    Inventors: James J. Cordingley, Jonathan S. Ehrmann, Joseph J. Griffiths, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff