Patents by Inventor James L. Say

James L. Say has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160123916
    Abstract: A sensor designed to determine the amount and concentration of analyte in a sample having a volume of less than about 1 ?L. The sensor has a working electrode coated with a non-leachable redox mediator. The redox mediator acts as an electron transfer agent between the analyte and the electrode. In addition, a second electron transfer agent, such as an enzyme, can be added to facilitate the electrooxidation or electroreduction of the analyte. The redox mediator is typically a redox compound bound to a polymer. The preferred redox mediators are air-oxidizable. The amount of analyte can be determined by coulometry. One particular coulometric technique includes the measurement of the current between the working electrode and a counter or reference electrode at two or more times. The charge passed by this current to or from the analyte is correlated with the amount of analyte in the sample. Other electrochemical detection methods, such as amperometric, voltammetric, and potentiometric techniques, can also be used.
    Type: Application
    Filed: January 11, 2016
    Publication date: May 5, 2016
    Inventors: Adam Heller, Benjamin J. Feldman, James L. Say, Mark S. Vreeke
  • Patent number: 9234864
    Abstract: A sensor designed to determine the amount and concentration of analyte in a sample having a volume of less than about 1 ?L. The sensor has a working electrode coated with a non-leachable redox mediator. The redox mediator acts as an electron transfer agent between the analyte and the electrode. In addition, a second electron transfer agent, such as an enzyme, can be added to facilitate the electrooxidation or electroreduction of the analyte. The redox mediator is typically a redox compound bound to a polymer. The preferred redox mediators are air-oxidizable. The amount of analyte can be determined by coulometry. One particular coulometric technique includes the measurement of the current between the working electrode and a counter or reference electrode at two or more times. The charge passed by this current to or from the analyte is correlated with the amount of analyte in the sample. Other electrochemical detection methods, such as amperometric, voltammetric, and potentiometric techniques, can also be used.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: January 12, 2016
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Benjamin J. Feldman, James L. Say, Mark S. Vreeke
  • Publication number: 20150338369
    Abstract: A sensor apparatus is disclosed herein. The sensor apparatus includes a flexible carrier that is elongated along a length of the carrier. The sensor apparatus also includes a plurality of analysis zones carried by the carrier. The analysis zones are spaced-apart from one another along the length of the carrier. The sensor apparatus further includes first and second spaced-apart electrodes carried by the flexible carrier. The first and second electrodes have lengths that extend along the length of the carrier. At least one of the first and second electrodes includes analyte sensing chemistry. The first and second electrodes extending across and contact the plurality of analysis zones.
    Type: Application
    Filed: August 3, 2015
    Publication date: November 26, 2015
    Inventor: James L. SAY
  • Publication number: 20150313521
    Abstract: A sensor module is disclosed herein. The sensor module includes a skin piercing member carried by the carrier. The skin piercing member has a skin piercing end positioned opposite from a base end. The skin piercing member defines a lumen that extends along the central longitudinal axis from the skin piercing end toward the base end and the lumen having a lumen axis. The sensor module also includes a blood sample analysis zone located entirely within the lumen of the skin piercing member and a capillary flow stop for stopping capillary flow at a predetermined location within the lumen of the skin piercing member. The sensor module includes an elongated working electrode positioned within the lumen. The working electrode has a length that extends along the lumen axis where at least a section of the working electrode is positioned within the analysis zone. The working electrode includes sensing chemistry.
    Type: Application
    Filed: December 3, 2013
    Publication date: November 5, 2015
    Inventor: James L. SAY
  • Publication number: 20150233863
    Abstract: A sensor includes a sheath that is elongated along a longitudinal axis; a spacer positioned within the sheath and defining first and second channels having lengths that extend along the longitudinal axis; a first elongated member positioned within the first channel; and a second elongated member positioned within the second channel. The first elongated member includes an active surface forming a working electrode and the second elongated member including an active surface defining a counter electrode.
    Type: Application
    Filed: May 7, 2015
    Publication date: August 20, 2015
    Inventor: James L. SAY
  • Patent number: 9097652
    Abstract: A sensor apparatus is disclosed herein. The sensor apparatus includes a flexible carrier that is elongated along a length of the carrier. The sensor apparatus also includes a plurality of analysis zones carried by the carrier. The analysis zones are spaced-apart from one another along the length of the carrier. The sensor apparatus further includes first and second spaced-apart electrodes carried by the flexible carrier. The first and second electrodes have lengths that extend along the length of the carrier. At least one of the first and second electrodes includes analyte sensing chemistry. The first and second electrodes extending across and contact the plurality of analysis zones.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: August 4, 2015
    Assignee: Pepex Biomedical, Inc.
    Inventor: James L. Say
  • Publication number: 20150208969
    Abstract: A process for the manufacture of small sensors with reproducible surfaces, including electrochemical sensors. One process includes forming channels in the surface of a substrate and disposing a conductive material in the channels to form an electrode. The conductive material can also be formed on the substrate by other impact and non-impact methods. In a preferred embodiment, the method includes cutting the substrate to form a sensor having a connector portion and a transcutaneous portion, the two portions having edges that define one continuous straight line.
    Type: Application
    Filed: April 9, 2015
    Publication date: July 30, 2015
    Applicant: Abbott Diabetes Care Inc.
    Inventors: James L. Say, Michael Francis Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke
  • Patent number: 9044178
    Abstract: A sensor includes a sheath that is elongated along a longitudinal axis; a spacer positioned within the sheath and defining first and second channels having lengths that extend along the longitudinal axis; a first elongated member positioned within the first channel; and a second elongated member positioned within the second channel. The first elongated member includes an active surface forming a working electrode and the second elongated member including an active surface defining a counter electrode.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: June 2, 2015
    Assignee: Pepex Biomedical, LLC
    Inventor: James L. Say
  • Publication number: 20150128412
    Abstract: Certain processes for manufacturing an electrochemical sensor module include etching a Silicon wafer to form precursor sensor bodies, disposing sensor fibers along rows of the precursor sensor bodies, securing a rigid layer over the sensor fibers, dividing the wafer, rigid layer, and sensor fibers into individual precursor sensor bodies, and joining each precursor sensor body to a component body to form sensor modules.
    Type: Application
    Filed: May 18, 2012
    Publication date: May 14, 2015
    Applicant: PEPEX BIOMEDICAL, INC.
    Inventor: James L. Say
  • Publication number: 20150065818
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Application
    Filed: October 31, 2014
    Publication date: March 5, 2015
    Applicant: Abbott Diabetes Care Inc.
    Inventors: James L. Say, Michael Francis Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Keith A. Friedman, Fredric C. Colman
  • Patent number: 8951377
    Abstract: Certain processes for manufacturing an electrochemical sensor module include assembly first and second housing portions of sensor modules; dispensing a sensor fiber across multiple first housing portions; joining the first and second housing portions; and separating the sensor modules by cutting the sensor fiber.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: February 10, 2015
    Assignee: Pepex Biomedical, Inc.
    Inventor: James L. Say
  • Publication number: 20140353173
    Abstract: A sensor designed to determine the amount and concentration of analyte in a sample having a volume of less than about 1 ?L. The sensor has a working electrode coated with a non-leachable redox mediator. The redox mediator acts as an electron transfer agent between the analyte and the electrode. In addition, a second electron transfer agent, such as an enzyme, can be added to facilitate the electrooxidation or electroreduction of the analyte. The redox mediator is typically a redox compound bound to a polymer. The preferred redox mediators are air-oxidizable. The amount of analyte can be determined by coulometry. One particular coulometric technique includes the measurement of the current between the working electrode and a counter or reference electrode at two or more times. The charge passed by this current to or from the analyte is correlated with the amount of analyte in the sample. Other electrochemical detection methods, such as amperometric, voltammetric, and potentiometric techniques, can also be used.
    Type: Application
    Filed: August 19, 2014
    Publication date: December 4, 2014
    Inventors: Adam Heller, Benjamin J. Feldman, James L. Say, Mark S. Vreeke
  • Publication number: 20140318988
    Abstract: The present disclosure relates to a sensor including an elongated member including at least a portion that is electrically conductive. The elongated member includes a sensing layer adapted to react with a material desired to be sensed. An insulating layer surrounds the elongated member. The insulating layer defines at least one access opening for allowing the material desired to be sensed to enter an interior region defined between the elongated member and the insulating layer. The insulating layer has an inner transverse cross-sectional profile that is different from an outer transverse cross-sectional profile of the elongated member. The difference in transverse cross-sectional profiles between the elongated member and the insulating layer provides channels at the interior region defined between the insulating layer and the elongated member. The channels extend generally along the length of the elongated member and are sized to allow the material desired to be sensed to move along the length of the sensor.
    Type: Application
    Filed: April 21, 2014
    Publication date: October 30, 2014
    Inventor: James L. Say
  • Publication number: 20140221801
    Abstract: An electrochemical analyte sensor formed using conductive traces on a substrate can be used for determining and/or monitoring a level of analyte in in vitro or in vivo analyte-containing fluids. For example, an implantable sensor may be used for the continuous or automatic monitoring of a level of an analyte, such as glucose, lactate, or oxygen, in a patient. The electrochemical analyte sensor includes a substrate and conductive material disposed on the substrate, the conductive material forming a working electrode. In some sensors, the conductive material is disposed in recessed channels formed in a surface of the sensor. An electron transfer agent and/or catalyst may be provided to facilitate the electrolysis of the analyte or of a second compound whose level depends on the level of the analyte. A potential is formed between the working electrode and a reference electrode or counter/reference electrode and the resulting current is a function of the concentration of the analyte in the body fluid.
    Type: Application
    Filed: April 11, 2014
    Publication date: August 7, 2014
    Applicant: Abbott Diabetes Care Inc.
    Inventors: James L. Say, Michael Francis Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Phillip John Plante
  • Publication number: 20140163340
    Abstract: A lactate sensor arrangement includes a catheter for withdrawing a test fluid sample, a sensor module for measuring an analyte such as lactate in the sample, and a pumping mechanism. A single uninterrupted flow path extends between the pumping mechanism and the catheter and within the flow path resides a sensor module containing a test chamber. The sensor arrangement also includes a control unit or controller that interfaces with a pumping mechanism driver. The sensor arrangement also includes a source of sensor calibration and anticoagulant solution, such as a reservoir.
    Type: Application
    Filed: May 18, 2012
    Publication date: June 12, 2014
    Applicant: PEPEX BIOMEDICAL INC.
    Inventor: James L. Say
  • Patent number: 8706180
    Abstract: An electrochemical analyte sensor formed using conductive traces on a substrate can be used for determining and/or monitoring a level of analyte in in vitro or in vivo analyte-containing fluids. For example, an implantable sensor may be used for the continuous or automatic monitoring of a level of an analyte, such as glucose, lactate, or oxygen, in a patient. The electrochemical analyte sensor includes a substrate and conductive material disposed on the substrate, the conductive material forming a working electrode. In some sensors, the conductive material is disposed in recessed channels formed in a surface of the sensor. An electron transfer agent and/or catalyst may be provided to facilitate the electrolysis of the analyte or of a second compound whose level depends on the level of the analyte. A potential is formed between the working electrode and a reference electrode or counter/reference electrode and the resulting current is a function of the concentration of the analyte in the body fluid.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: April 22, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James L. Say, Michael Francis Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Phillip John Plante
  • Patent number: 8702932
    Abstract: The present disclosure relates to a sensor including an elongated member including at least a portion that is electrically conductive. The elongated member includes a sensing layer adapted to react with a material desired to be sensed. An insulating layer surrounds the elongated member. The insulating layer defines at least one access opening for allowing the material desired to be sensed to enter an interior region defined between the elongated member and the insulating layer. The insulating layer has an inner transverse cross-sectional profile that is different from an outer transverse cross-sectional profile of the elongated member. The difference in transverse cross-sectional profiles between the elongated member and the insulating layer provides channels at the interior region defined between the insulating layer and the elongated member. The channels extend generally along the length of the elongated member and are sized to allow the material desired to be sensed to move along the length of the sensor.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: April 22, 2014
    Assignee: Pepex Biomedical, Inc.
    Inventor: James L. Say
  • Publication number: 20140027311
    Abstract: A sensor apparatus is disclosed herein. The sensor apparatus includes a flexible carrier that is elongated along a length of the carrier. The sensor apparatus also includes a plurality of analysis zones carried by the carrier. The analysis zones are spaced-apart from one another along the length of the carrier. The sensor apparatus further includes first and second spaced-apart electrodes carried by the flexible carrier. The first and second electrodes have lengths that extend along the length of the carrier. At least one of the first and second electrodes includes analyte sensing chemistry. The first and second electrodes extending across and contact the plurality of analysis zones.
    Type: Application
    Filed: January 5, 2012
    Publication date: January 30, 2014
    Applicant: PEPEX BIOMEDICAL ,INC.
    Inventor: James L. Say
  • Publication number: 20140031654
    Abstract: A sensor module is disclosed herein. The sensor module includes a main housing defining an analysis zone within the housing. The sensor module also includes a skin piercing member mounted within the main housing. The skin piercing member is movable relative to the main housing between a retracted position and an extended position. The main housing of the sensor module defines a fluid sample flow passage that extends from a sampling end of the main housing to the analysis zone. The fluid sample flow passage includes a funnel structure through which the skin piecing member extends when in the extended position. The fluid sample flow passage also includes capillary flow enhancing slots that extend outwardly from opposite sides of the funnel structure.
    Type: Application
    Filed: January 5, 2012
    Publication date: January 30, 2014
    Applicant: PEPEX BIOMEDICAL, INC.
    Inventors: James L. Say, Stephen L. Pohl
  • Publication number: 20130274574
    Abstract: An electrochemical analyte sensor formed using conductive traces on a substrate can be used for determining and/or monitoring a level of analyte in in vitro or in vivo analyte-containing fluids. For example, an implantable sensor may be used for the continuous or automatic monitoring of a level of an analyte, such as glucose, lactate, or oxygen, in a patient. The electrochemical analyte sensor includes a substrate and conductive material disposed on the substrate, the conductive material forming a working electrode. In some sensors, the conductive material is disposed in recessed channels formed in a surface of the sensor. An electron transfer agent and/or catalyst may be provided to facilitate the electrolysis of the analyte or of a second compound whose level depends on the level of the analyte. A potential is formed between the working electrode and a reference electrode or counter/reference electrode and the resulting current is a function of the concentration of the analyte in the body fluid.
    Type: Application
    Filed: June 10, 2013
    Publication date: October 17, 2013
    Inventors: James L. Say, Michael Francis Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke