Patents by Inventor Jamieson Christmas

Jamieson Christmas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210225063
    Abstract: Disclosed are systems, methods, and non-transitory computer-readable media for adjusting depth of AR content on HUD. A viewing device identifies, based on sensor data, a physical object visible through a transparent display of the vehicle. The sensor data indicates an initial distance of the physical object from the vehicle. The viewing device gathers virtual content corresponding to the physical object and generates an initial presentation of the virtual content based on the initial distance. The viewing device presents the initial presentation of the virtual content on the transparent display at a position on the transparent display corresponding to the physical object. The viewing device determines, based on updated sensor data, an updated distance of the physical object and generates an updated presentation of the virtual content based on the updated distance. The viewing device presents the updated presentation of the virtual content on the transparent display of the vehicle.
    Type: Application
    Filed: April 5, 2021
    Publication date: July 22, 2021
    Inventors: Brian Mullins, Jamieson Christmas
  • Publication number: 20210216041
    Abstract: There is provided a holographic projector comprising a processing engine, spatial light modulator (403B), light source (401B) and light-receiving surface (405B). The processing engine outputs a computer-generated diffractive pattern defining a propagation distance to an image plane. The spatial light modulator displays the computer-generated diffractive pattern. The light source illuminates the spatial light modulator at an angle of incidence (theta) greater than zero. The light-receiving surface receives spatially-modulated light from the spatial light modulator. The light-receiving surface is substantially parallel to the spatial light modulator (alpha-theta).
    Type: Application
    Filed: June 10, 2019
    Publication date: July 15, 2021
    Inventors: Jamieson Christmas, Niall McGee
  • Patent number: 11054643
    Abstract: There is provided a method of projection using an optical element (502,602) having spatially variant optical power. The method comprises combining Fourier domain data representative of a 2D image with Fourier domain data having a first lensing effect (604a) to produce first holographic data. Light is spatially modulated (504,603a) with the first holographic data to form a first spatially modulated light beam. The first spatially modulated light beam is redirected using the optical element (502,602) by illuminating a first region (607) of the optical element (602) with the first spatially modulated beam. The first lensing effect (604a) compensates for the optical power of the optical element in the first region (607). Advantageous embodiments relate to a head-up display for a vehicle using the vehicle windscreen (502,602) as an optical element to redirect light to the viewer (505,609).
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: July 6, 2021
    Assignee: Envisics Ltd
    Inventors: Jamieson Christmas, Dackson Masiyano
  • Publication number: 20210191319
    Abstract: There is provided a head-up display having an eye-box comprising a driver monitoring system, picture generating unit and optical system. The driver monitoring system is arranged to illuminate and monitor a driver. The driver monitoring system comprises a first display channel. The picture generating unit is arranged to display a picture on a replay plane. The picture generating unit comprises a second display channel Each display channel comprises a light source, spatial light modulator and controller. Each light source is arranged to emit light. Each spatial light modulator is arranged to receive light from the respective light source and output spatially-modulated light in accordance with a computer-generated hologram displayed on the spatial light modulator to form a respective light pattern on the replay plane. Each controller is arranged to output the computer-generated hologram to the spatial light modulator. The optical system is arranged to relay each light pattern from the replay plane.
    Type: Application
    Filed: June 12, 2019
    Publication date: June 24, 2021
    Inventor: Jamieson Christmas
  • Publication number: 20210191132
    Abstract: A head-up display for a vehicle having a window. The head-up display comprises a picture generating unit and a projection engine. The picture generating unit is arranged to output pictures. Each picture comprises a first picture component and a second picture component. The projection engine is arranged to receive the pictures output by the picture generating unit and project the pictures onto the window of the vehicle in order to form a first virtual image of the first picture component at a first virtual image distance and a second virtual image of the second picture component at a second virtual image distance. Light of the first picture component is polarised in a first polarisation direction and light of the second picture component is polarised in a second polarisation direction perpendicular to the first polarisation direction.
    Type: Application
    Filed: August 22, 2019
    Publication date: June 24, 2021
    Inventors: Mate Karner, Jamieson Christmas
  • Publication number: 20210191321
    Abstract: A method of holographic projection. The method comprises projecting at least one calibration image using a first colour holographic channel and a second colour holographic channel. Each calibration image comprises at least one light spot. The method comprises performing the following steps for each calibration image in order to determine a plurality of displacements vectors at a respective plurality of different locations on the replay plane. A first step comprises projecting the calibration image onto the replay plane using a first colour holographic channel by displaying a first hologram on a first spatial light modulator and illuminating the first spatial light modulator with light of the first colour. A second step comprises projecting the calibration image onto the replay using a second colour holographic channel by displaying a second hologram on a second spatial light modulator and illuminating the second spatial light modulator with light of the second colour.
    Type: Application
    Filed: December 11, 2020
    Publication date: June 24, 2021
    Inventors: Jamieson Christmas, Michal Wengierow
  • Publication number: 20210195146
    Abstract: A projector arranged to form a plurality of image reconstructions on different planes disposed on a common projection axis and a corresponding method is disclosed. A hologram engine is arranged to determine a hologram corresponding to each image for image reconstruction, and to form a diffractive pattern including the corresponding hologram for each image. A display engine is arranged to display each diffractive pattern and receive light such that an image reconstruction corresponding to each hologram is formed on a plane of the plurality of different planes. Each image reconstruction comprises image spots arranged in a pattern. Image spots of a first image reconstruction formed on a first plane are interposed between image spots of a second image reconstruction formed on a second plane.
    Type: Application
    Filed: December 11, 2020
    Publication date: June 24, 2021
    Inventor: Jamieson Christmas
  • Publication number: 20210173341
    Abstract: A method of calculating a hologram having an amplitude and a phase component. The method comprises (i) receiving an input image comprising a plurality of data values representing amplitude. The method then comprises (ii) assigning a random phase value to each data value of the plurality of data values to form a complex data set. The method then comprises (iii) performing an inverse Fourier transform of the complex data set. The method then comprises (iv) constraining each complex data value (X1, X2) of the transformed complex data set to one of a plurality of allowable complex data values (GL1-GL8), each comprising an amplitude modulation value and a phase modulation value, to form a hologram, wherein, the phase modulation values (GL1-GL7) of the plurality of allowable complex data values substantially span at least 3?/2 and at least one of the allowable complex data values has an amplitude modulation value of substantially zero (GL8) and a phase modulation value of substantially zero.
    Type: Application
    Filed: August 22, 2019
    Publication date: June 10, 2021
    Inventors: Neil Collings, Jamieson Christmas
  • Publication number: 20210165212
    Abstract: There is disclosed herein a display device comprising a picture generating unit, a waveguide pupil expander and a viewer-tracking system. The picture generating unit comprises a first display channel, a second display channel and a controller. The first display channel is arranged to output first spatially-modulated light of a first colour. The first spatially-modulated light corresponds to a first picture. The second display channel is arranged to output second spatially-modulated light of a second colour. The second spatially-modulated light corresponding to a second picture. The controller is arranged to drive the first display channel and second display channel. The waveguide pupil expander comprises a pair of parallel reflective surfaces. The waveguide pupil expander defines an input port and a viewing window. The input port is arranged to receive the first spatially-modulated light and the second spatially-modulated light.
    Type: Application
    Filed: September 28, 2020
    Publication date: June 3, 2021
    Inventor: Jamieson Christmas
  • Publication number: 20210149341
    Abstract: An illumination system is arranged to output a light beam for illuminating a scene. The system comprises a spatial light modulator arranged to receive incident light, and to output light comprising a first component and a second component. The first component comprises incident light that is output without modulation by the spatial light modulator. The second component comprises incident light that is spatially-modulated according to a hologram and output by the spatial light modulator. A control device is operable to control the proportion of light output by the spatial light modulator that corresponds to the second component.
    Type: Application
    Filed: July 26, 2019
    Publication date: May 20, 2021
    Inventors: Ian Bledowski, Konstantin Deichsel, Neil Collings, Jamieson Christmas
  • Patent number: 11003137
    Abstract: There is provided a lighting device arranged to produce a controllable light beam for illuminating a scene. The device comprises an addressable spatial light modulator arranged to provide a selectable phase delay distribution to a beam of incident light. The device further comprises Fourier optics arranged to receive phase-modulated light from the spatial light modulator and form a light distribution. The device further comprises projection optics arranged to project the light distribution to form a pattern of illumination as said controllable light beam.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: May 11, 2021
    Assignee: Envisics Ltd
    Inventors: Jamieson Christmas, Dackson Masiyano, Mikael Collin
  • Patent number: 10984580
    Abstract: Disclosed are systems, methods, and non-transitory computer-readable media for adjusting depth of AR content on HUD. A viewing device identifies, based on sensor data, a physical object visible through a transparent display of the vehicle. The sensor data indicates an initial distance of the physical object from the vehicle. The viewing device gathers virtual content corresponding to the physical object and generates an initial presentation of the virtual content based on the initial distance. The viewing device presents the initial presentation of the virtual content on the transparent display at a position on the transparent display corresponding to the physical object. The viewing device determines, based on updated sensor data, an updated distance of the physical object and generates an updated presentation of the virtual content based on the updated distance. The viewing device presents the updated presentation of the virtual content on the transparent display of the vehicle.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: April 20, 2021
    Assignee: ENVISICS LTD
    Inventors: Brian Mullins, Jamieson Christmas
  • Publication number: 20210103248
    Abstract: There is provided a holographic projector comprising a hologram engine and a controller. The hologram engine is arranged to provide a hologram comprising a plurality of hologram pixels. Each hologram pixel has a respective hologram pixel value. The controller is arranged to selectively-drive a plurality of light-modulating pixels so as to display the hologram. Displaying the hologram comprises displaying each hologram pixel value on a contiguous group of light-modulating pixels of the plurality of light-modulating pixels such that there is a one-to-many pixel correlation between the hologram and the plurality of light-modulating pixels.
    Type: Application
    Filed: November 24, 2020
    Publication date: April 8, 2021
    Inventor: Jamieson Christmas
  • Publication number: 20210096512
    Abstract: A method of driving a display device. The display device comprises a liquid crystal panel, a display engine and a hologram engine. The liquid crystal display panel comprising a plurality of pixels. The display device comprises a display engine arrange to drive each pixel of the plurality of pixels during each display interval of a plurality of display intervals defined by the display device. Each pixel is driven in accordance with a drive signal. The drive signal may comprise a pixel voltage for each pixel. The display engine is arranged to invert the polarity of the drive signal every display interval. The hologram engine is arranged to send multi-level phase holograms for display to the display engine. The method comprises displaying the multi-level phase holograms in immediately consecutive display intervals without field inversion.
    Type: Application
    Filed: August 17, 2020
    Publication date: April 1, 2021
    Inventor: Jamieson CHRISTMAS
  • Publication number: 20210084270
    Abstract: A holographic projector comprises an image processing engine, a hologram engine, a display engine and a light source. The image processing engine is arranged to receive a source image for projection and generate a plurality of secondary images from a primary image based on the source image. The source image comprises pixels. Each secondary image may comprise fewer pixels than the source image. The plurality of secondary images are generated by sampling the primary image. The hologram engine is arranged to determine, such as calculate, a hologram corresponding to each secondary image to form a plurality of holograms. The display engine is arranged to display each hologram on the display device. The light source is arranged to Illuminate each hologram during display to form a holographic reconstruction corresponding to each secondary image on a replay plane.
    Type: Application
    Filed: August 24, 2020
    Publication date: March 18, 2021
    Inventors: Jamieson Christmas, Michal Wengierow, Nicu Gavrila
  • Publication number: 20210072379
    Abstract: A light detection and ranging system arranged to scan a scene is provided. A light source outputs light having a first characteristic. A spatial light modulator receives output light from the light source and outputs spatially-modulated light in accordance with computer-generated holograms represented thereon. A light detector receives light having the first characteristic from the scene and outputs a light response signal. A holographic controller is arranged to output a plurality of computer-generated holograms to the spatial light modulator. Each computer-generated hologram is arranged to form structured light having a corresponding pattern within the scene. The holographic controller is further arranged to change the pattern of the structured light formed by at least one of the plurality of computer-generated holograms.
    Type: Application
    Filed: May 14, 2019
    Publication date: March 11, 2021
    Inventors: Jamieson Christmas, Paul Whiting
  • Publication number: 20210055692
    Abstract: There is provided a lighting system for a vehicle. The lighting system comprises a holographic projector and a light distribution system. The holographic projector comprises a hologram engine and a spatial light modulator. The hologram engine is arranged to output holograms. The spatial light modulator is arranged to display each hologram and spatially-modulate light in accordance with each hologram. The spatially-modulated light forms a holographic reconstruction, corresponding to each hologram, on a replay plane. The light distribution system comprises a plurality of optical fibres. Each optical fibre comprises an input optically-coupled to respective sub-area of the replay plane and an output optically coupled with an illumination sub-system of the vehicle.
    Type: Application
    Filed: November 9, 2020
    Publication date: February 25, 2021
    Inventor: Jamieson Christmas
  • Patent number: 10928776
    Abstract: The disclosure provides a display system and a method for displaying a virtual image to a viewer An optical system of the disclosure includes a spatial light modulator, a light source, a Fourier transform lens, a viewing system and a processing system. The spatial light modulator is arranged to display holographic data in the Fourier domain, illuminated by the light source. The Fourier transform lens is arranged to produce a 2D holographic reconstruction in the spatial domain corresponding to the holographic data. The viewing system is arranged to produce a virtual image of the 2D holographic reconstruction. The processing system is arranged to combine the Fourier domain data representative of a 2D image with Fourier domain data representative of a phase only lens to produce first holographic data, and provide the first holographic data to the optical system to produce a virtual image.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: February 23, 2021
    Assignee: Two Trees Photonics Limited
    Inventors: Jamieson Christmas, Dackson Masiyano
  • Publication number: 20210041834
    Abstract: A holographic projector having an optical path is described. The holographic projector comprises a first spatial light modulator arranged to display a first hologram, and a first light source. The first light source is arranged to illuminate the first spatial light modulator with light of a first wavelength such that a first holographic reconstruction corresponding to the first hologram is formed on a replay plane. The holographic projector further comprises a continuous block of transparent material. At least part of the optical path is formed through the continuous block of transparent material. The transparent material has a refractive index greater than air.
    Type: Application
    Filed: August 4, 2020
    Publication date: February 11, 2021
    Inventors: Jamieson Christmas, Máté Karner
  • Patent number: 10871746
    Abstract: There is provided a holographic projector comprising a hologram engine and a controller. The hologram engine is arranged to provide a hologram comprising a plurality of hologram pixels. Each hologram pixel has a respective hologram pixel value. The controller is arranged to selectively-drive a plurality of light-modulating pixels so as to display the hologram. Displaying the hologram comprises displaying each hologram pixel value on a contiguous group of light-modulating pixels of the plurality of light-modulating pixels such that there is a one-to-many pixel correlation between the hologram and the plurality of light-modulating pixels.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: December 22, 2020
    Assignee: Dualitas Ltd
    Inventor: Jamieson Christmas