Patents by Inventor Jeff A. Stainsby

Jeff A. Stainsby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230240554
    Abstract: A method of imaging an implant device in a computing device is provided. The computing device includes a processor interconnected with a memory and a display. The method includes, at the processor: obtaining a first magnetic resonance (MR) image of a patient tissue, the first MR image containing a first magnetic field strength indicator; responsive to the implant device being inserted in the patient tissue, obtaining a second MR image of the patient tissue, the second MR image containing a second magnetic field strength indicator smaller than the first magnetic field strength indicator; registering the second MR image with the first MR image; generating a composite image from the first MR image and the second MR image; and presenting the composite image on the display.
    Type: Application
    Filed: March 30, 2023
    Publication date: August 3, 2023
    Inventors: Jeff STAINSBY, Alexander Gyles PANTHER, Chad Tyler HARRIS, Cameron Anthony PIRON
  • Patent number: 11707204
    Abstract: A method of imaging an implant device in a computing device is provided. The computing device includes a processor interconnected with a memory and a display. The method includes, at the processor: obtaining a first magnetic resonance (MR) image of a patient tissue, the first MR image containing a first magnetic field strength indicator; responsive to the implant device being inserted in the patient tissue, obtaining a second MR image of the patient tissue, the second MR image containing a second magnetic field strength indicator smaller than the first magnetic field strength indicator; registering the second MR image with the first MR image; generating a composite image from the first MR image and the second MR image; and presenting the composite image on the display.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: July 25, 2023
    Inventors: Jeff Stainsby, Alexander Gyles Panther, Chad Tyler Harris, Cameron Anthony Piron
  • Patent number: 11333729
    Abstract: Systems and methods for magnetic resonance imaging (“MRI”) of multiple different nuclear spin species using the same radio frequency (“RF”) coil are described. Generally, multiple different nuclear spin species are imaged using the same RF coil by using an MRI system whose magnetic field can be rapidly ramped between a number of different, and arbitrary, magnetic field strengths. The magnetic field of this MRI system can be ramped to different values in reasonable amounts of time (e.g., in a time frame that is feasible within an imaging study).
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: May 17, 2022
    Assignee: SYNAPTIVE MEDICAL INC.
    Inventor: Jeff A. Stainsby
  • Patent number: 11320502
    Abstract: Systems and methods for rapidly ramping the magnetic field of a superconducting magnet, such as a superconducting magnet adapted for use in a magnetic resonance imaging system, are provided. The magnetic field can be rapidly ramped up or down by changing the current density in the superconducting magnet while monitoring and controlling the superconducting magnet's temperature to remain below a transition temperature. A superconducting switch is used to connect the superconducting magnet and a power supply in a connected circuit. The current generated by the power supply is then adjusted to increase or decrease the current density in the superconducting magnet to respectively ramp up or ramp down the magnetic field strength in a controlled manner. The ramp rate at which the magnetic field strength is changed is determined and optimized based on the operating parameters of the superconducting magnet and the current being generated by the power supply.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: May 3, 2022
    Assignee: SYNAPTIVE MEDICAL INC.
    Inventors: Jeff A. Stainsby, Chad T. Harris, Alexander G. Panther, Cameron A. Piron
  • Patent number: 11119171
    Abstract: Systems and methods for adaptive, multi-resolution magnetic resonance imaging (“MRI”), in which an MRI scan prescription is adaptively changed to acquire high-quality data from select regions-of-interest (“ROI”) in a larger field-of-view (“FOV”), are provided. The higher quality data can include data representing higher spatial resolution, higher signal-to-noise ratio (“SNR”), increased diffusion encoding via repeated acquisition with a larger number of diffusion-encoding directions, and so on. A composite image can be generated that displays the higher quality images of the ROIs overlaid on the larger FOV.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: September 14, 2021
    Assignee: SYNAPTIVE MEDICAL INC.
    Inventors: Cameron A. Piron, Jeff Stainsby, Chad Harris, Philip Beatty
  • Publication number: 20210018581
    Abstract: Systems and methods for rapidly ramping the magnetic field of a superconducting magnet, such as a superconducting magnet adapted for use in a magnetic resonance imaging system, are provided. The magnetic field can be rapidly ramped up or down by changing the current density in the superconducting magnet while monitoring and controlling the superconducting magnet's temperature to remain below a transition temperature. A superconducting switch is used to connect the superconducting magnet and a power supply in a connected circuit. The current generated by the power supply is then adjusted to increase or decrease the current density in the superconducting magnet to respectively ramp up or ramp down the magnetic field strength in a controlled manner. The ramp rate at which the magnetic field strength is changed is determined and optimized based on the operating parameters of the superconducting magnet and the current being generated by the power supply.
    Type: Application
    Filed: September 30, 2020
    Publication date: January 21, 2021
    Inventors: Jeff A. Stainsby, Chad T. Harris, Alexander G. Panther, Cameron A. Piron
  • Publication number: 20200393528
    Abstract: Systems and methods for magnetic resonance imaging (“MRI”) of multiple different nuclear spin species using the same radio frequency (“RF”) coil are described. Generally, multiple different nuclear spin species are imaged using the same RF coil by using an MRI system whose magnetic field can be rapidly ramped between a number of different, and arbitrary, magnetic field strengths. The magnetic field of this MRI system can be ramped to different values in reasonable amounts of time (e.g., in a time frame that is feasible within an imaging study).
    Type: Application
    Filed: August 28, 2020
    Publication date: December 17, 2020
    Inventor: Jeff A. Stainsby
  • Patent number: 10830849
    Abstract: Systems and methods for rapidly ramping the magnetic field of a superconducting magnet, such as a superconducting magnet adapted for use in a magnetic resonance imaging system, are provided. The magnetic field can be rapidly ramped up or down by changing the current density in the superconducting magnet while monitoring and controlling the superconducting magnet's temperature to remain below a transition temperature. A superconducting switch is used to connect the superconducting magnet and a power supply in a connected circuit. The current generated by the power supply is then adjusted to increase or decrease the current density in the superconducting magnet to respectively ramp up or ramp down the magnetic field strength in a controlled manner. The ramp rate at which the magnetic field strength is changed is determined and optimized based on the operating parameters of the superconducting magnet and the current being generated by the power supply.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: November 10, 2020
    Assignee: SYNAPTIVE MEDICAL (BARBADOS) INC.
    Inventors: Jeff A. Stainsby, Chad T. Harris, Alexander G. Panther, Cameron A. Piron
  • Patent number: 10802094
    Abstract: Systems and methods for magnetic resonance imaging (“MRI”) of multiple different nuclear spin species using the same radio frequency (“RF”) coil are described. Generally, multiple different nuclear spin species are imaged using the same RF coil by using an MRI system whose magnetic field can be rapidly ramped between a number of different, and arbitrary, magnetic field strengths. The magnetic field of this MRI system can be ramped to different values in reasonable amounts of time (e.g., in a time frame that is feasible within an imaging study).
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: October 13, 2020
    Assignee: SYNAPTIVE MEDICAL (BARBADOS) INC.
    Inventor: Jeff A. Stainsby
  • Patent number: 10311586
    Abstract: Systems and methods for co-registering medical images obtained with different imaging modalities are provided. For instance, images obtained with x-ray imaging, such as x-ray computed tomography (“CT”), can be co-registered with images obtained with magnetic resonance imaging (“MRI”). The different imaging modalities generate images that have different visualization characteristics for tissues; thus, in general, co-registration is accomplished by identifying different anatomical features in the different images and then utilizing a known spatial relationship between those anatomical features to co-register the different images.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: June 4, 2019
    Assignee: Synaptive Medical (Barbados) Inc.
    Inventors: Cameron A. Piron, Jeff Stainsby
  • Publication number: 20190072627
    Abstract: Systems and methods for magnetic resonance imaging (“MRI”) of multiple different nuclear spin species using the same radio frequency (“RF”) coil are described. Generally, multiple different nuclear spin species are imaged using the same RF coil by using an MRI system whose magnetic field can be rapidly ramped between a number of different, and arbitrary, magnetic field strengths. The magnetic field of this MRI system can be ramped to different values in reasonable amounts of time (e.g., in a time frame that is feasible within an imaging study).
    Type: Application
    Filed: May 27, 2016
    Publication date: March 7, 2019
    Inventor: Jeff A. Stainsby
  • Publication number: 20190011511
    Abstract: Systems and methods for rapidly ramping the magnetic field of a superconducting magnet, such as a superconducting magnet adapted for use in a magnetic resonance imaging system, are provided. The magnetic field can be rapidly ramped up or down by changing the current density in the superconducting magnet while monitoring and controlling the superconducting magnet's temperature to remain below a transition temperature. A superconducting switch is used to connect the superconducting magnet and a power supply in a connected circuit. The current generated by the power supply is then adjusted to increase or decrease the current density in the superconducting magnet to respectively ramp up or ramp down the magnetic field strength in a controlled manner. The ramp rate at which the magnetic field strength is changed is determined and optimized based on the operating parameters of the superconducting magnet and the current being generated by the power supply.
    Type: Application
    Filed: August 27, 2018
    Publication date: January 10, 2019
    Inventors: Jeff A. Stainsby, Chad T. Harris, Alexander G. Panther, Cameron A. Piron
  • Publication number: 20180279904
    Abstract: A method of imaging an implant device in a computing device is provided. The computing device includes a processor interconnected with a memory and a display. The method includes, at the processor: obtaining a first magnetic resonance (MR) image of a patient tissue, the first MR image containing a first magnetic field strength indicator; responsive to the implant device being inserted in the patient tissue, obtaining a second MR image of the patient tissue, the second MR image containing a second magnetic field strength indicator smaller than the first magnetic field strength indicator; registering the second MR image with the first MR image; generating a composite image from the first MR image and the second MR image; and presenting the composite image on the display.
    Type: Application
    Filed: October 6, 2015
    Publication date: October 4, 2018
    Inventors: Jeff STAINSBY, Alexander Gyles PANTHER, Chad Tyler HARRIS, Cameron Anthony PIRON
  • Patent number: 10060995
    Abstract: Systems and methods for rapidly ramping the magnetic field of a superconducting magnet, such as a superconducting magnet adapted for use in a magnetic resonance imaging system, are provided. The magnetic field can be rapidly ramped up or down by changing the current density in the superconducting magnet while monitoring and controlling the superconducting magnet's temperature to remain below a transition temperature. A superconducting switch is used to connect the superconducting magnet and a power supply in a connected circuit. The current generated by the power supply is then adjusted to increase or decrease the current density in the superconducting magnet to respectively ramp up or ramp down the magnetic field strength in a controlled manner. The ramp rate at which the magnetic field strength is changed is determined and optimized based on the operating parameters of the superconducting magnet and the current being generated by the power supply.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: August 28, 2018
    Assignee: Synaptive Medical (Barbados) Inc.
    Inventors: Jeff A. Stainsby, Chad T. Harris, Alexander G. Panther, Cameron A. Piron
  • Publication number: 20180210053
    Abstract: Systems and methods for adaptive, multi-resolution magnetic resonance imaging (“MRI”], in which an MRI scan prescription is adaptively changed to acquire high-quality data from select regions-of-interest (“ROI”] in a larger field-of-view (“FOV”), are provided. The higher quality data can include data representing higher spatial resolution, higher signal-to-noise ratio (“SNR”], increased diffusion encoding via repeated acquisition with a larger number of diffusion-encoding directions, and so on. A composite image can be generated that displays the higher quality images of the ROIs overlaid on the larger FOV.
    Type: Application
    Filed: July 16, 2015
    Publication date: July 26, 2018
    Inventors: Cameron A. Piron, Jeff Stainsby, Chad Harris, Phillip Beatty
  • Publication number: 20180103890
    Abstract: A magnetic resonance imaging (MRI) system is provided for imaging immune response of soft tissue to therapy by, prior to therapy, administering a contrast agent to the soft tissue; imaging a region of interest using delta relaxation enhanced magnetic resonance (DREMR) to define a functional section; selectively sampling local cells in the functional section; conducting immuno-assay analysis on the sampled local cells; and following therapy, further imaging said region of interest using DREMR to assess immune response of said cells to therapy.
    Type: Application
    Filed: March 11, 2015
    Publication date: April 19, 2018
    Inventors: Cameron Anthony PIRON, Chad Tyler HARRIS, Jeff STAINSBY, Alexander Gyles PANTHER
  • Publication number: 20170261574
    Abstract: Systems and methods for rapidly ramping the magnetic field of a superconducting magnet, such as a superconducting magnet adapted for use in a magnetic resonance imaging system, are provided. The magnetic field can be rapidly ramped up or down by changing the current density in the superconducting magnet while monitoring and controlling the superconducting magnet's temperature to remain below a transition temperature. A superconducting switch is used to connect the superconducting magnet and a power supply in a connected circuit. The current generated by the power supply is then adjusted to increase or decrease the current density in the superconducting magnet to respectively ramp up or ramp down the magnetic field strength in a controlled manner. The ramp rate at which the magnetic field strength is changed is determined and optimized based on the operating parameters of the superconducting magnet and the current being generated by the power supply.
    Type: Application
    Filed: October 16, 2015
    Publication date: September 14, 2017
    Inventors: Jeff A. Stainsby, Chad T. Harris, Alexander G. Panther, Cameron A. Piron
  • Publication number: 20170251950
    Abstract: Systems and methods for providing quantitative measurements of global glymphatic flow of cerebrospinal fluid (“CSF”) using magnetic resonance imaging (“MRI”) are described. In general, images are obtained from a subject using flow-sensitive MRI techniques that are designed to be particularly sensitive to the glymphatic flow of CSF. Measures of glymphatic flow can be obtained while the subject is in an awake state and again while the subject is in a sleep state. Based on these two measurements, a biomarker that indicates a neurological state or disease can be generated.
    Type: Application
    Filed: May 19, 2017
    Publication date: September 7, 2017
    Inventors: Cameron A. Piron, Jeff Stainsby, Chad Harris
  • Publication number: 20170186180
    Abstract: Systems and methods for co-registering medical images obtained with different imaging modalities are provided. For instance, images obtained with x-ray imaging, such as x-ray computed tomography (“CT”), can be co-registered with images obtained with magnetic resonance imaging (“MRI”). The different imaging modalities generate images that have different visualization characteristics for tissues; thus, in general, co-registration is accomplished by identifying different anatomical features in the different images and then utilizing a known spatial relationship between those anatomical features to co-register the different images.
    Type: Application
    Filed: September 18, 2014
    Publication date: June 29, 2017
    Inventors: Cameron A. Piron, Jeff Stainsby
  • Patent number: 9681821
    Abstract: Systems and methods for providing quantitative measurements of global glymphatic flow of cerebrospinal fluid (“CSF”) using magnetic resonance imaging (“MRI”) are described. In general, images are obtained from a subject using flow-sensitive MRI techniques that are designed to be particularly sensitive to the glymphatic flow of CSF. Measures of glymphatic flow can be obtained while the subject is in an awake state and again while the subject is in a sleep state. Based on these two measurements, a biomarker that indicates a neurological state or disease can be generated.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: June 20, 2017
    Assignee: SYNAPTIVE MEDICAL (BARBADOS) INC.
    Inventors: Cameron Piron, Jeff Stainsby, Chad Harris