Patents by Inventor Jeffrey B. Shealy

Jeffrey B. Shealy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220293455
    Abstract: A method of wafer scale packaging acoustic resonator devices and an apparatus therefor. The method including providing a partially completed semiconductor substrate comprising a plurality of single crystal acoustic resonator devices, each having a first electrode member, a second electrode member, and an overlying passivation material. At least one of the devices to be configured with an external connection, a repassivation material overlying the passivation material, an under metal material overlying the repassivation material. Copper pillar interconnect structures are then configured overlying the electrode members, and solder bump structures are form overlying the copper pillar interconnect structures.
    Type: Application
    Filed: May 27, 2022
    Publication date: September 15, 2022
    Inventor: Jeffrey B. SHEALY
  • Patent number: 11424728
    Abstract: A method and structure for a transfer process for an acoustic resonator device. In an example, a bulk acoustic wave resonator (BAWR) with an air reflection cavity is formed. A piezoelectric thin film is grown on a crystalline substrate. One or more patterned electrodes are deposited on the surface of the piezoelectric film. An etched sacrificial layer is deposited over the one or more electrodes and a planarized support layer is deposited over the sacrificial layer. The support layer is etched to form one or more cavities overlying the electrodes to expose the sacrificial layer. The sacrificial layer is etched to release the cavities around the electrodes. Then, a cap layer is fusion bonded to the support layer to enclose the electrodes in the support layer cavities.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: August 23, 2022
    Assignee: AKOUSTIS, INC.
    Inventors: Dae Ho Kim, Mary Winters, Kenneth Fallon, Jeffrey B. Shealy
  • Patent number: 11418169
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled to the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: August 16, 2022
    Assignee: Akoustis, Inc.
    Inventors: Rohan W. Houlden, David M. Aichele, Jeffrey B. Shealy
  • Patent number: 11411168
    Abstract: A method of forming a piezoelectric thin film can be provided by heating a substrate in a process chamber to a temperature between about 350 degrees Centigrade and about 850 degrees Centigrade to provide a sputtering temperature of the substrate and sputtering a Group III element from a target in the process chamber onto the substrate at the sputtering temperature to provide the piezoelectric thin film including a nitride of the Group III element on the substrate to have a crystallinity of less than about 1.0 degree at Full Width Half Maximum (FWHM) to about 10 arcseconds at FWHM measured using X-ray diffraction (XRD).
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: August 9, 2022
    Assignee: Akoustis, Inc.
    Inventors: Craig Moe, Jeffrey B. Shealy, Mary Winters
  • Patent number: 11411169
    Abstract: A method of forming a piezoelectric thin film includes sputtering a first surface of a substrate to provide a piezoelectric thin film comprising AlN, AlScN, AlCrN, HfMgAlN, or ZrMgAlN thereon, processing a second surface of the substrate that is opposite the first surface of the substrate to provide an exposed surface of the piezoelectric thin film from beneath the second surface of the substrate, wherein the exposed surface of the piezoelectric thin film includes a first crystalline quality portion, removing a portion of the exposed surface of the piezoelectric thin film to access a second crystalline quality portion that is covered by the first crystalline quality portion, wherein the second crystalline quality portion has a higher quality than the first crystalline quality portion and processing the second crystalline quality portion to provide an acoustic resonator device on the second crystalline quality portion.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: August 9, 2022
    Assignee: Akoustis, Inc.
    Inventors: Craig Moe, Jeffrey B. Shealy, Mary Winters, Dae Ho Kim, Abhay Saranswarup Kochhar
  • Patent number: 11398402
    Abstract: A method of wafer scale packaging acoustic resonator devices and an apparatus therefor. The method including providing a partially completed semiconductor substrate comprising a plurality of single crystal acoustic resonator devices, each having a first electrode member, a second electrode member, and an overlying passivation material. At least one of the devices to be configured with an external connection, a repassivation material overlying the passivation material, an under metal material overlying the repassivation material. Copper pillar interconnect structures are then configured overlying the electrode members, and solder bump structures are form overlying the copper pillar interconnect structures.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: July 26, 2022
    Assignee: Akoustis, Inc.
    Inventor: Jeffrey B. Shealy
  • Publication number: 20220231666
    Abstract: An RF diplexer circuit device using modified lattice, lattice, and ladder circuit topologies. The diplexer can include a pair of filter circuits, each with a plurality of series resonator devices and shunt resonator devices. In the ladder topology, the series resonator devices are connected in series while shunt resonator devices are coupled in parallel to the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a plurality of series resonator devices, and a pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. A multiplexing device or inductor device can be configured to select between the signals coming through the first and second filter circuits.
    Type: Application
    Filed: December 30, 2021
    Publication date: July 21, 2022
    Inventors: Saurabh GUPTA, Guillermo Moreno GRANADO, Rohan W. HOULDEN, David M. AICHELE, Jeffrey B. SHEALY, Bradford R. BERSIN
  • Publication number: 20220231665
    Abstract: An RF diplexer circuit device using modified lattice, lattice, and ladder circuit topologies. The diplexer can include a pair of filter circuits, each with a plurality of series resonator devices and shunt resonator devices. In the ladder topology, the series resonator devices are connected in series while shunt resonator devices are coupled in parallel to the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a plurality of series resonator devices, and a pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. A multiplexing device or inductor device can be configured to select between the signals coming through the first and second filter circuits.
    Type: Application
    Filed: January 18, 2021
    Publication date: July 21, 2022
    Inventors: Guillermo Moreno GRANADO, Rohan W. HOULDEN, David M. AICHELE, Jeffrey B. SHEALY
  • Patent number: 11394451
    Abstract: A front-end module (FEM) for a 6.1 GHz Wi-Fi acoustic wave resonator RF filter circuit. The device can include a power amplifier (PA), a 6.1 GHz resonator, and a diversity switch. The device can further include a low noise amplifier (LNA). The PA is electrically coupled to an input node and can be configured to a DC power detector or an RF power detector. The resonator can be configured between the PA and the diversity switch, or between the diversity switch and an antenna. The LNA may be configured to the diversity switch or be electrically isolated from the switch. Another 6.1 GHZ resonator may be configured between the diversity switch and the LNA. In a specific example, this device integrates a 6.1 GHz PA, a 6.1 GHZ bulk acoustic wave (BAW) RF filter, a single pole two throw (SP2T) switch, and a bypassable LNA into a single device.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: July 19, 2022
    Assignee: Akoustis, Inc.
    Inventors: Jeffrey B. Shealy, Rohan W. Houlden, David M. Aichele
  • Publication number: 20220209742
    Abstract: A method and structure for single crystal acoustic electronic device. The device includes a substrate having an enhancement layer formed overlying its surface region, a support layer formed overlying the enhancement layer, and an air cavity formed through a portion of the support layer. Single crystal piezoelectric material is formed overlying the air cavity and a portion of the enhancement layer. Also, a first electrode material coupled to the backside surface region of the crystal piezoelectric material and spatially configured within the cavity. A second electrode material is formed overlying the topside of the piezoelectric material, and a dielectric layer formed overlying the second electrode material. Further, one or more shunt layers can be formed around the perimeter of a resonator region of the device to connect the piezoelectric material to the enhancement layer.
    Type: Application
    Filed: March 14, 2022
    Publication date: June 30, 2022
    Inventor: Jeffrey B. SHEALY
  • Publication number: 20220166408
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include a plurality of resonator devices and a plurality of resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: February 8, 2022
    Publication date: May 26, 2022
    Inventors: Jeffrey B. SHEALY, Michael D. HODGE, Rohan W. HOULDEN, Mary WINTERS, Ramakrishna VETURY, Ya SHEN, David M. AICHELE
  • Patent number: 11316496
    Abstract: A method and structure for a single crystal acoustic electronic device. The device includes a substrate having an enhancement layer formed overlying its surface region, a support layer formed overlying the enhancement layer, and an air cavity formed through a portion of the support layer. A single crystal piezoelectric material is formed overlying the air cavity and a portion of the enhancement layer. Also, a first electrode material coupled to the backside surface region of the crystal piezoelectric material and spatially configured within the cavity. A second electrode material is formed overlying the topside of the piezoelectric material, and a dielectric layer formed overlying the second electrode material. Further, one or more shunt layers can be formed around the perimeter of a resonator region of the device to connect the piezoelectric material to the enhancement layer.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: April 26, 2022
    Assignee: Akoustis, Inc.
    Inventor: Jeffrey B. Shealy
  • Publication number: 20220116023
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include a plurality of resonator devices and a plurality of resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: December 21, 2021
    Publication date: April 14, 2022
    Inventors: Jeffrey B. SHEALY, Michael D. HODGE, Rohan W. HOULDEN, Mary WINTERS, Ramakrishna VETURY, Ya SHEN, David M. AICHELE
  • Publication number: 20220103239
    Abstract: A front end module (FEM) for a 5.6/6.6 GHz Wi-Fi acoustic wave resonator RF filter circuit. The device can include a power amplifier (PA), a 5.6/6.6 GHz resonator, and a diversity switch. The device can further include a low noise amplifier (LNA). The PA is electrically coupled to an input node and can be configured to a DC power detector or an RF power detector. The resonator can be configured between the PA and the diversity switch, or between the diversity switch and an antenna. The LNA may be configured to the diversity switch or be electrically isolated from the switch. Another 5.6/6.6 GHZ resonator may be configured between the diversity switch and the LNA. In a specific example, this device integrates a 5.6/6.6 GHz PA, a 5.6/6.6 GHZ bulk acoustic wave (BAW) RF filter, a single pole two throw (SP2T) switch, and a bypassable LNA into a single device.
    Type: Application
    Filed: December 7, 2021
    Publication date: March 31, 2022
    Inventors: Jeffrey B. SHEALY, Rohan W. HOULDEN, David M. AICHELE
  • Publication number: 20220052665
    Abstract: A multi-stage matching network filter circuit device. The device comprises bulk acoustic wave (BAW) resonator device having an input node, an output node, and a ground node. A first matching network circuit is coupled to the input node. A second matching network circuit is coupled to the output node. A ground connection network circuit coupled to the ground node. The first or second matching network circuit can include an inductive ladder network including a plurality of series inductors in a series configuration and a plurality of grounded inductors wherein each of the plurality of grounded inductors is coupled to the connection between each connected pair of series inductors. The inductive ladder network can include one or more LC tanks, wherein each of the one or more LC tanks is coupled between a connection between a series inductor and a subsequent series inductor, which is also coupled to a grounded inductor.
    Type: Application
    Filed: August 17, 2020
    Publication date: February 17, 2022
    Inventors: Guillermo Moreno GRANADO, Rohan W. HOULDEN, David M. AICHELE, Jeffrey B. SHEALY
  • Patent number: 11245376
    Abstract: A method of wafer scale packaging acoustic resonator devices and an apparatus therefor. The method including providing a partially completed semiconductor substrate comprising a plurality of single crystal acoustic resonator devices provided on a silicon and carbide bearing material, each having a first electrode member, a second electrode member, and an overlying passivation material. At least one of the devices to be configured with an external connection, a repassivation material overlying the passivation material, an under metal material overlying the repassivation material. Copper pillar interconnect structures are then configured overlying the electrode members, and solder bump structures are form overlying the copper pillar interconnect structures.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: February 8, 2022
    Assignee: Akoustis, Inc.
    Inventor: Jeffrey B. Shealy
  • Patent number: 11245382
    Abstract: A method of manufacture and structure for an acoustic resonator device having a hybrid piezoelectric stack with a strained single crystal layer and a thermally-treated polycrystalline layer. The method can include forming a strained single crystal piezoelectric layer overlying the nucleation layer and having a strain condition and piezoelectric layer parameters, wherein the strain condition is modulated by nucleation growth parameters and piezoelectric layer parameters to improve one or more piezoelectric properties of the strained single crystal piezoelectric layer. Further, the method can include forming a polycrystalline piezoelectric layer overlying the strained single crystal piezoelectric layer, and performing a thermal treatment on the polycrystalline piezoelectric layer to form a recrystallized polycrystalline piezoelectric layer. The resulting device with this hybrid piezoelectric stack exhibits improved electromechanical coupling and wide bandwidth performance.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: February 8, 2022
    Assignee: AKOUSTIS, INC.
    Inventors: Shawn R. Gibb, Craig Moe, Jeff Leathersich, Steven Denbaars, Jeffrey B. Shealy
  • Publication number: 20220021364
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: September 30, 2021
    Publication date: January 20, 2022
    Inventors: Ramakrishna VETURY, Alexander Y. FELDMAN, Michael D. HODGE, Art GEISS, Shawn R. GIBB, Mark D. BOOMGARDEN, Michael P. LEWIS, Pinal PATEL, Jeffrey B. SHEALY
  • Patent number: 11211918
    Abstract: In an array of single crystal acoustic resonators, the effective coupling coefficient of first and second strained single crystal filters are individually tailored in order to achieve desired frequency responses. In a duplexer embodiment, the effective coupling coefficient of a transmit band-pass filter is lower than the effective coupling coefficient of a receive band-pass filter of the same duplexer. The coefficients can be tailored by varying the ratio of the thickness of a piezoelectric layer to the total thickness of electrode layers or by forming a capacitor in parallel with an acoustic resonator within the filter for which the effective coupling coefficient is to be degraded.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: December 28, 2021
    Assignee: Akoustis, Inc.
    Inventor: Jeffrey B. Shealy
  • Patent number: 11184079
    Abstract: A front end module (FEM) for a 5.5 GHz Wi-Fi acoustic wave resonator RF filter circuit. The device can include a power amplifier (PA), a 5.5 GHz resonator, and a diversity switch. The device can further include a low noise amplifier (LNA). The PA is electrically coupled to an input node and can be configured to a DC power detector or an RF power detector. The resonator can be configured between the PA and the diversity switch, or between the diversity switch and an antenna. The LNA may be configured to the diversity switch or be electrically isolated from the switch. Another 5.5 GHZ resonator may be configured between the diversity switch and the LNA. In a specific example, this device integrates a 5.5 GHz PA, a 5.5 GHZ bulk acoustic wave (BAW) RF filter, a single pole two throw (SP2T) switch, and a bypassable LNA into a single device.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: November 23, 2021
    Assignee: AKOUSTIS, INC.
    Inventors: Jeffrey B. Shealy, Rohan W. Houlden, David M. Aichele