Patents by Inventor Jeffrey B. Shealy

Jeffrey B. Shealy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11177868
    Abstract: A front end module (FEM) for a 6.5 GHz Wi-Fi acoustic wave resonator RF filter circuit. The device can include a power amplifier (PA), a 6.5 GHz resonator, and a diversity switch. The device can further include a low noise amplifier (LNA). The PA is electrically coupled to an input node and can be configured to a DC power detector or an RF power detector. The resonator can be configured between the PA and the diversity switch, or between the diversity switch and an antenna. The LNA may be configured to the diversity switch or be electrically isolated from the switch. Another 6.5 GHZ resonator may be configured between the diversity switch and the LNA. In a specific example, this device integrates a 6.5 GHz PA, a 6.5 GHZ bulk acoustic wave (BAW) RF filter, a single pole two throw (SP2T) switch, and a bypassable LNA into a single device.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: November 16, 2021
    Assignee: Akoustis, Inc.
    Inventors: Jeffrey B. Shealy, Rohan W. Houlden, David M. Aichele
  • Patent number: 11165404
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: November 2, 2021
    Assignee: Akoustis, Inc.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Publication number: 20210257993
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include a plurality of resonator devices and a plurality of resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: May 3, 2021
    Publication date: August 19, 2021
    Inventors: Jeffrey B. SHEALY, Michael D. HODGE, Rohan W. HOULDEN, Mary WINTERS, Ramakrishna VETURY, Ya SHEN, David M. AICHELE
  • Publication number: 20210234525
    Abstract: A method and structure for a transfer process for an acoustic resonator device. In an example, a bulk acoustic wave resonator (BAWR) with an air reflection cavity is formed. A piezoelectric thin film is grown on a crystalline substrate. Patterned electrodes are deposited on the surface of the piezoelectric film. An etched sacrificial layer is deposited over the electrodes and a planarized support layer is deposited over the sacrificial layer. The device can include a dielectric protection layer (DPL) that protects the piezoelectric layer from etching processes that can produce rough surfaces and reduces parasitic capacitance around the perimeter of the resonator when the DPL's dielectric constant is lower than that of the piezoelectric layer. The DPL can be configured between the top electrode and the piezoelectric layer, between the bottom electrode and the piezoelectric layer, or both.
    Type: Application
    Filed: April 14, 2021
    Publication date: July 29, 2021
    Inventors: Dae Ho KIM, Frank Zhiquang BI, Mary WINTERS, Abhay Saranswarup KOCHHAR, Emad MEHDIZADEH, Rohan W. HOULDEN, Jeffrey B. SHEALY
  • Patent number: 11070184
    Abstract: A method and structure for a transfer process for an acoustic resonator device. In an example, a bulk acoustic wave resonator (BAWR) with an air reflection cavity is formed. A piezoelectric thin film is grown on a crystalline substrate. A first patterned electrode is deposited on the surface of the piezoelectric film. An etched sacrificial layer is deposited over the first electrode and a planarized support layer is deposited over the sacrificial layer, which is then bonded to a substrate wafer. The crystalline substrate is removed and a second patterned electrode is deposited over a second surface of the film. The sacrificial layer is etched to release the air reflection cavity. Also, a cavity can instead be etched into the support layer prior to bonding with the substrate wafer. Alternatively, a reflector structure can be deposited on the first electrode, replacing the cavity.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: July 20, 2021
    Assignee: Akoustis, Inc.
    Inventors: Dae Ho Kim, Mary Winters, Ramakrishna Vetury, Jeffrey B. Shealy
  • Patent number: 11063204
    Abstract: A method of manufacture for an acoustic resonator device. The method can include forming a topside metal electrode overlying a piezoelectric substrate with a piezoelectric layer and a seed substrate. A topside micro-trench can be formed within the piezoelectric layer and a topside metal can be formed overlying the topside micro-trench. This topside metal can include a topside metal plug formed within the topside micro-trench. A first backside trench can be formed underlying the topside metal electrode, and a second backside trench can be formed underlying the topside micro-trench. A backside metal electrode can be formed within the first backside trench, while a backside metal plug can be formed within the second backside trench and electrically coupled to the topside metal plug and the backside metal electrode. The topside micro-trench, the topside metal plug, the second backside trench, and the backside metal plug form a micro-via.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: July 13, 2021
    Assignee: Akoustis, Inc.
    Inventors: Alexander Y. Feldman, Mark D. Boomgarden, Michael P. Lewis, Jeffrey B. Shealy, Ramakrishna Vetury
  • Patent number: 11063576
    Abstract: A front end module (FEM) for a 5.6 GHz Wi-Fi acoustic wave resonator RF filter circuit. The device can include a power amplifier (PA), a 5.6 GHz resonator, and a diversity switch. The device can further include a low noise amplifier (LNA). The PA is electrically coupled to an input node and can be configured to a DC power detector or an RF power detector. The resonator can be configured between the PA and the diversity switch, or between the diversity switch and an antenna. The LNA may be configured to the diversity switch or be electrically isolated from the switch. Another 5.6 GHZ resonator may be configured between the diversity switch and the LNA. In a specific example, this device integrates a 5.6 GHz PA, a 5.6 GHZ bulk acoustic wave (BAW) RF filter, a single pole two throw (SP2T) switch, and a bypassable LNA into a single device.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: July 13, 2021
    Assignee: Akoustis, Inc.
    Inventors: Jeffrey B. Shealy, Rohan W. Houlden, Shawn R. Gibb, David M. Aichele
  • Publication number: 20210203402
    Abstract: A front-end module (FEM) for a 6.1 GHz Wi-Fi acoustic wave resonator RF filter circuit. The device can include a power amplifier (PA), a 6.1 GHz resonator, and a diversity switch. The device can further include a low noise amplifier (LNA). The PA is electrically coupled to an input node and can be configured to a DC power detector or an RF power detector. The resonator can be configured between the PA and the diversity switch, or between the diversity switch and an antenna. The LNA may be configured to the diversity switch or be electrically isolated from the switch. Another 6.1 GHZ resonator may be configured between the diversity switch and the LNA. In a specific example, this device integrates a 6.1 GHz PA, a 6.1 GHZ bulk acoustic wave (BAW) RF filter, a single pole two throw (SP2T) switch, and a bypassable LNA into a single device.
    Type: Application
    Filed: March 11, 2021
    Publication date: July 1, 2021
    Inventors: Jeffrey B. SHEALY, Rohan W. HOULDEN, David M. AICHELE
  • Publication number: 20210202473
    Abstract: A method of manufacture and structure for a monolithic single chip single crystal device. The method can include forming a first single crystal epitaxial layer overlying the substrate and forming one or more second single crystal epitaxial layers overlying the first single crystal epitaxial layer. The first single crystal epitaxial layer and the one or more second single crystal epitaxial layers can be processed to form one or more active or passive device components. Through this process, the resulting device includes a monolithic epitaxial stack integrating multiple circuit functions.
    Type: Application
    Filed: February 19, 2021
    Publication date: July 1, 2021
    Inventors: Shawn R. GIBB, David AICHELE, Ramakrishna VETURY, Mark D. BOOMGARDEN, Jeffrey B. SHEALY
  • Publication number: 20210184642
    Abstract: A method and structure for a transfer process for an acoustic resonator device. In an example, a bulk acoustic wave resonator (BAWR) with an air reflection cavity is formed. A piezoelectric thin film is grown on a crystalline substrate. A first patterned electrode is deposited on the surface of the piezoelectric film. An etched sacrificial layer is deposited over the first electrode and a planarized support layer is deposited over the sacrificial layer, which is then bonded to a substrate wafer. The crystalline substrate is removed and a second patterned electrode is deposited over a second surface of the film. The sacrificial layer is etched to release the air reflection cavity. Also, a cavity can instead be etched into the support layer prior to bonding with the substrate wafer. Alternatively, a reflector structure can be deposited on the first electrode, replacing the cavity.
    Type: Application
    Filed: March 1, 2021
    Publication date: June 17, 2021
    Inventors: Dae Ho KIM, Mary WINTERS, Ramakrishna VETURY, Jeffrey B. SHEALY
  • Publication number: 20210184641
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: February 9, 2021
    Publication date: June 17, 2021
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Patent number: 11031989
    Abstract: A front end module (FEM) for a 5.2 GHz Wi-Fi acoustic wave resonator RF filter circuit. The device can include a power amplifier (PA), a 5.2 GHz resonator, and a diversity switch. The device can further include a low noise amplifier (LNA). The PA is electrically coupled to an input node and can be configured to a DC power detector or an RF power detector. The resonator can be configured between the PA and the diversity switch, or between the diversity switch and an antenna. The LNA may be configured to the diversity switch or be electrically isolated from the switch. Another 5.2 GHZ resonator may be configured between the diversity switch and the LNA. In a specific example, this device integrates a 5.2 GHz PA, a 5.2 GHZ bulk acoustic wave (BAW) RF filter, a single pole two throw (SP2T) switch, and a bypassable LNA into a single device.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: June 8, 2021
    Assignee: Akoustis, Inc.
    Inventors: Jeffrey B. Shealy, Rohan W. Houlden, Shawn R. Gibb, David M. Aichele
  • Patent number: 10992279
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: April 27, 2021
    Assignee: Akoustis, Inc.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Patent number: 10985732
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: April 20, 2021
    Assignee: AKOUSTIS, INC.
    Inventors: Jeffrey B. Shealy, Rohan W. Houlden, Shawn R. Gibb, Mary Winters, Ramakrishna Vetury
  • Publication number: 20210111695
    Abstract: An elliptical-shaped resonator device. The device includes a bottom metal plate, a piezoelectric layer overlying the bottom metal plate, and a top metal plate overlying the piezoelectric layer. The top metal plate, the piezoelectric layer, and the bottom metal plate are characterized by an elliptical shape having a horizontal diameter (dx) and a vertical diameter (dy), which can be represented as ellipse ratio R=dx/dy. Using the elliptical structure, the resulting bulk acoustic wave resonator (BAWR) can exhibit equivalent or improved insertion loss, higher coupling coefficient, and higher quality factor compared to conventional polygon-shaped resonators.
    Type: Application
    Filed: November 30, 2020
    Publication date: April 15, 2021
    Inventors: Dae Ho KIM, Pinal PATEL, Rohan W. HOULDEN, James Blanton SHEALY, Jeffrey B. SHEALY
  • Patent number: 10979024
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: April 13, 2021
    Assignee: AKOUSTIS, INC.
    Inventors: Jeffrey B. Shealy, Rohan W. Houlden, Shawn R. Gibb, David M. Aichele
  • Patent number: 10979023
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: April 13, 2021
    Assignee: AKOUSTIS, INC.
    Inventors: Jeffrey B. Shealy, Rohan W. Houlden, Shawn R. Gibb, Mary Winters, Ramakrishna Vetury
  • Patent number: 10979011
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: April 13, 2021
    Assignee: Akoustis, Inc.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Patent number: 10979022
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: April 13, 2021
    Assignee: Akoustis, Inc.
    Inventors: Jeffrey B. Shealy, Michael Hodge, Rohan W. Houlden, Shawn R. Gibb, Mary Winters, Ramakrishna Vetury, David Aichele
  • Patent number: 10979025
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: April 13, 2021
    Assignee: Akoustis, Inc.
    Inventors: Rohan W. Houlden, Jeffrey B. Shealy, Shawn R. Gibb, David Aichele