Patents by Inventor Jeffrey C. Hudgens

Jeffrey C. Hudgens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9076829
    Abstract: Substrate transport systems, apparatus, and methods are described. The systems are adapted to efficiently put or pick substrates at a destination by rotating a boom linkage to a position adjacent to the destination and then independently actuating an upper arm link housing and one or more wrist members to put or pick one or more substrates at the destination wherein the wrist member is independently actuated relative to the forearm link housing and the motion of the forearm link member is kinematically linked to the motion of the upper arm link housing. Numerous other aspects are provided.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: July 7, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey A. Brodine, Jeffrey C. Hudgens, Izya Kremerman
  • Patent number: 9076830
    Abstract: Substrate transport systems and robot apparatus are provided. The systems are adapted to pick or place a substrate at a destination by independently rotating an upper arm, a forearm, and dual wrist members relative to each other and a base. Methods of operating the robot apparatus are provided, as are numerous other aspects.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: July 7, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Izya Kremerman, Jeffrey C. Hudgens, Damon Keith Cox
  • Publication number: 20150145413
    Abstract: Process chamber gas flow control apparatus may include, or be included in, a process chamber configured to process a substrate therein. The gas flow control apparatus may include a valve configured to seal an exhaust port in the process chamber. The valve may be moveable in the X, Y, and Z directions relative to the exhaust port to adjust a gas flow pattern (including, e.g., flow rate and/or flow uniformity) within the process chamber. Methods of adjusting a flow of a process gas within a process chamber are also provided, as are other aspects.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Inventors: Nir Merry, Chandrakant M. Sapkale, Izya Kremerman, Jeffrey C. Hudgens
  • Patent number: 9033644
    Abstract: Boom drive apparatus for substrate transport systems and methods are described. The boom drive apparatus is adapted to drive one or more multi-arm robots rotationally mounted to the boom to efficiently put or pick substrates. The boom drive apparatus has a boom including a hub, a web, a first pilot above the web, and a second pilot below the web, a first driving member rotationally mounted to the first pilot, a second driving member rotationally mounted to the second pilot, a first driven member rotationally mounted to the boom above the a web, a second driven member rotationally mounted to the boom below the a web, and a first and second transmission members coupling the driving members to driven members located outboard on the boom. Numerous other aspects are provided.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: May 19, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey C. Hudgens, Izya Kremerman, Jeffrey A. Brodine
  • Publication number: 20150110586
    Abstract: Universal component lift apparatus for moving components of electronic device manufacturing systems is described. The universal component lift apparatus includes a track, a truck moveable along the track, and a lift apparatus adapted to couple to the truck, the lift apparatus including a wheeled base, a lift portion, and a boom adapted to couple to the component. Electronic device processing systems and methods of moving components thereof are described, as are numerous other aspects.
    Type: Application
    Filed: October 22, 2014
    Publication date: April 23, 2015
    Inventors: Jeffrey C. Hudgens, Alpay Yilmaz
  • Publication number: 20150090295
    Abstract: In some embodiments, apparatus and methods are provided for improved handling of lithography masks including a mask inverter that includes a first contact pad dedicated to inverting masks that have not been cleaned; a second contact pad dedicated to inverting masks that have been cleaned; an actuator coupled to the first and second contact pads and operable to invert the first and second contact pads; and a controller coupled to the actuator and operative to control the actuator. Numerous other aspects are provided.
    Type: Application
    Filed: September 27, 2014
    Publication date: April 2, 2015
    Inventors: Edward Ng, Jeffrey C. Hudgens, Ayan Majumdar, Sushant S. Koshti
  • Publication number: 20150090294
    Abstract: In some embodiments, methods and systems are provided for improved handling of lithography masks including loading a mask via a first load port from a first carrier; inverting the mask using a first contact pad; cleaning the mask; inverting the mask using a second contact pad; and unloading the mask via a second load port into a second carrier. Numerous other aspects are provided.
    Type: Application
    Filed: September 27, 2014
    Publication date: April 2, 2015
    Inventors: Edward Ng, Jeffrey C. Hudgens, Ayan Majumdar, Sushant S. Koshti
  • Publication number: 20150082625
    Abstract: An electronic device manufacturing system may include a mainframe to which one or more process chambers of different size may be coupled. A different number of process chambers may be coupled to each facet (i.e., side wall) of the mainframe. The process chambers coupled to one facet may be of a different size than process chambers coupled to other facets. For example, one process chamber of a first size may be coupled to a first facet, two process chambers each of a second size different than the first size may be coupled to a second facet, and three process chambers each of a third size different than the first and second sizes may be coupled to a third facet. Other configurations are possible. The mainframe may have a square or rectangular shape. Methods of assembling an electronic device manufacturing system are also provided, as are other aspects.
    Type: Application
    Filed: September 24, 2014
    Publication date: March 26, 2015
    Inventors: Michael Robert Rice, Jeffrey C. Hudgens
  • Publication number: 20150022821
    Abstract: Methods, apparatus, and assemblies are provided for an adapter insert including an adapter frame including a support rail adapted to support one or more substrates in a substrate carrier, a frame extension coupled to, or integral with, the adapter frame, and a mapping feature formed on the frame extension and disposed to be detected by a sensor for determining whether an adapter insert is present or absent in a substrate carrier. Numerous additional features are disclosed.
    Type: Application
    Filed: July 16, 2014
    Publication date: January 22, 2015
    Inventors: John J. Mazzocco, Edward Ng, Douglas MacLeod, David Phillips, Ayan Majumdar, Jeffrey C. Hudgens
  • Publication number: 20150016941
    Abstract: An electronic device manufacturing system is disclosed. The system includes a processing tool having one or more processing chambers each adapted to perform an electronic device manufacturing process on one or more substrates; a substrate carrier adapted to couple to the system and carry one or more substrates; and a component adapted to create a sealed environment relative to at least a portion of the substrate carrier and to substantially equalize the sealed environment with an environment within the substrate carrier. Methods of the invention are described as are numerous other aspects.
    Type: Application
    Filed: October 1, 2014
    Publication date: January 15, 2015
    Inventors: Michael Robert Rice, Jeffrey C. Hudgens
  • Publication number: 20140367266
    Abstract: A measurement tool includes a rotation stage supporting an workpiece support, a thickness sensor overlying a workpiece support surface; a translation actuator coupled to the thickness sensor for translation of the thickness sensor relative to the workpiece support surface; and a computer coupled to control the rotation actuator and the translation actuator, and coupled to receive an output of the thickness sensor.
    Type: Application
    Filed: October 29, 2013
    Publication date: December 18, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Edward J. Budiarto, Dmitry A. Dzilno, Todd J. Egan, Jeffrey C. Hudgens, Nir Merry
  • Patent number: 8870512
    Abstract: An electronic device manufacturing system is disclosed. The system includes a processing tool having one or more processing chambers each adapted to perform an electronic device manufacturing process on one or more substrates; a substrate carrier adapted to couple to the system and carry one or more substrates; and a component adapted to create a sealed environment relative to at least a portion of the substrate carrier and to substantially equalize the sealed environment with an environment within the substrate carrier. Methods of the invention are described as are numerous other aspects.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: October 28, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Michael Robert Rice, Jeffrey C. Hudgens
  • Publication number: 20140286736
    Abstract: An electronic device processing system is disclosed. The system includes a transfer chamber including facets and a plurality of single-entry process chambers coupled to the facets, wherein at least some process chambers are non-focalized process chambers, at least one load lock chamber, and a robot apparatus operable to transport substrates between the process chambers and the load lock chamber(s). Robot apparatus includes an upper arm, a forearm, and a wrist member adapted for independent rotation relative to the forearm about a wrist axis, and an end effector adapted to carry a substrate. Various degrees of yaw may be imparted to the wrist member in order to service the non-focalized process chambers. Systems and methods are also provided as are other aspects.
    Type: Application
    Filed: June 11, 2014
    Publication date: September 25, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Izya Kremerman, Jeffrey C. Hudgens
  • Publication number: 20140286741
    Abstract: Robot apparatus, substrate transport systems, and methods are described. The robot apparatus and systems are adapted to efficiently put or pick substrates at a destination by rotating a boom linkage to a position adjacent to the destination and then actuating robot assemblies to put or pick the substrates at the destination. Numerous other aspects are provided.
    Type: Application
    Filed: June 6, 2014
    Publication date: September 25, 2014
    Inventors: Izya Kremerman, Jeffrey C. Hudgens
  • Publication number: 20140271050
    Abstract: A wafer handling system may include upper and lower linked robot arms that may move a wafer along a nonlinear trajectory between chambers of a semiconductor processing system. These features may result in a smaller footprint in which the semiconductor processing system may operate, smaller transfer chambers, smaller openings in process chambers, and smaller slit valves, while maintaining high wafer throughput. In some embodiments, simultaneous fast wafer swaps between two separate chambers, such as load locks and ALD (atomic layer deposition) carousels, may be provided. Methods of wafer handling are also provided, as are other aspects.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 18, 2014
    Inventors: William Tyler Weaver, Malcolm N. Daniel, JR., Robert B. Vopat, Jason M. Schaller, Jacob Newman, Dinesh Kanawade, Andrew J. Constant, Stephen C. Hickerson, Jeffrey C. Hudgens, Marvin L. Freeman
  • Publication number: 20140262035
    Abstract: A transfer chamber for semiconductor device manufacturing includes (1) a plurality of sides that define a region configured to maintain a vacuum level and allow transport of substrates between processing chambers, the plurality of sides defining a first portion and a second portion of the transfer chamber and including (a) a first side that couples to two twinned processing chambers; and (b) a second side that couples to a single processing chamber; (2) a first substrate handler located in the first portion of the transfer chamber; (3) a second substrate handler located in the second portion of the transfer chamber; and (4) a hand-off location configured to allow substrates to be passed between the first portion and the second portion of the transfer chamber using the first and second substrate handlers. Method aspects are also provided.
    Type: Application
    Filed: February 14, 2014
    Publication date: September 18, 2014
    Inventors: Nir Merry, Michael Robert Rice, Sushant S. Koshti, Jeffrey C. Hudgens
  • Publication number: 20140271055
    Abstract: Electronic device processing systems are described. The system includes a mainframe housing having a transfer chamber, a first facet, a second facet opposite the first facet, a third facet, and a fourth facet opposite the third facet, a first carousel assembly coupled to a first facet, a second carousel assembly coupled to the third facet, a first load lock coupled to the second facet, a second load lock coupled to the fourth facet, and a robot adapted to operate in the transfer chamber to exchange substrates from the first and second carousels. Methods and multi-axis robots for transporting substrates are described, as are numerous other aspects.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventors: William T. Weaver, Malcolm N. Daniel, JR., Robert B. Vopat, Jason M. Schaller, Jacob Newman, Dinesh Kanawade, Andrew J. Constant, Stephen C. Hickerson, Jeffrey C. Hudgens, Marvin L. Freeman
  • Patent number: 8784033
    Abstract: Substrate transport systems, apparatus and methods are described. The systems are adapted to efficiently put or pick substrates at a destination by rotating a boom linkage to a position adjacent to the destination and then actuating a robot assembly to put or pick the substrate at the destination. Numerous other aspects are provided.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: July 22, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Izya Kremerman, Jeffrey C. Hudgens
  • Patent number: 8777547
    Abstract: A substrate transporting robot apparatus is disclosed which is adapted to transport a substrate to and from a chamber of an electronic device processing system. The apparatus may include an upper arm rotatable in an X-Y plane, a forearm rotatable relative to the upper arm in the X-Y plane, and a wrist member rotatable relative to the forearm in the X-Y plane, the wrist member including an end effector adapted to carry a substrate. The wrist member may be subjected to independent rotation such that various degrees of yaw may be imparted to the wrist member. In some aspects, the independent rotation is provided without a motive power device (e.g., motor) being provided on the arms or wrist member, i.e., the wrist member may be remotely driven. Systems and methods using the robot apparatus are also provided as are numerous other aspects.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: July 15, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Izya Kremerman, Jeffrey C. Hudgens
  • Publication number: 20140156070
    Abstract: Embodiments disclose a vibration-controlled robot apparatus. The apparatus includes a robot having an end effector operable to transport a substrate, a sensor coupled to the robot, the sensor operable to sense vibration as the robot transports the substrate, and operating the robot to reduce vibration of the end effector supporting the substrate. In some embodiments, a filter is provided in the motor drive circuit to filter one or more frequencies causing unwanted vibration of the end effector. Vibration control systems and methods of operating the same are provided, as are other aspects.
    Type: Application
    Filed: November 20, 2013
    Publication date: June 5, 2014
    Inventors: Nir Merry, Alex Minkovich, Jeffrey C. Hudgens, Brendan Till