Patents by Inventor Jeffry J. Sniegowski

Jeffry J. Sniegowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030210481
    Abstract: Various embodiments of reinforced mirror microstructures for a surface micromachined optical system are disclosed. Multi-layered and structurally reinforced mirror microstructures are disclosed, including both two and three-layer microstructures. Adjacent structural layers in these multi-layered mirror microstructures may be structurally reinforced and interconnected by a plurality of vertically disposed columns, or by a plurality of at least generally laterally extending rails or ribs, or some combination thereof. Various embodiments of a single layered mirror microstructure with a structural reinforcement assembly that cantilevers from a lower surface thereof is also disclosed.
    Type: Application
    Filed: April 8, 2003
    Publication date: November 13, 2003
    Inventors: Jeffry J. Sniegowski, M. Steven Rodgers
  • Publication number: 20030210447
    Abstract: Various embodiments of reinforced mirror microstructures for a surface micromachined optical system are disclosed. Multi-layered and structurally reinforced mirror microstructures are disclosed, including both two and three-layer microstructures. Adjacent structural layers in these multi-layered mirror microstructures may be structurally reinforced and interconnected by a plurality of vertically disposed columns, or by a plurality of at least generally laterally extending rails or ribs, or some combination thereof. Various embodiments of a single layered mirror microstructure with a structural reinforcement assembly that cantilevers from a lower surface thereof is also disclosed.
    Type: Application
    Filed: May 5, 2003
    Publication date: November 13, 2003
    Inventors: Jeffry J. Sniegowski, M. Steven Rodgers
  • Patent number: 6615496
    Abstract: A cutting blade is disclosed fabricated of micromachined silicon. The cutting blade utilizes a monocrystalline silicon substrate having a {211} crystalline orientation to form one or more cutting edges that are defined by the intersection of {211} crystalline planes of silicon with {111} crystalline planes of silicon. This results in a cutting blade which has a shallow cutting-edge angle &thgr; of 19.5°. The micromachined cutting blade can be formed using an anisotropic wet etching process which substantially terminates etching upon reaching the {111} crystalline planes of silicon. This allows multiple blades to be batch fabricated on a common substrate and separated for packaging and use. The micromachined cutting blade, which can be mounted to a handle in tension and optionally coated for increased wear resistance and biocompatibility, has multiple applications including eye surgery (LASIK procedure).
    Type: Grant
    Filed: May 4, 2000
    Date of Patent: September 9, 2003
    Assignee: Sandia Corporation
    Inventors: James G. Fleming, Jeffry J. Sniegowski, Stephen Montague
  • Patent number: 6600587
    Abstract: Various embodiments of reinforced mirror microstructures for a surface micromachined optical system are disclosed. Multi-layered and structurally reinforced mirror microstructures are disclosed, including both two and three-layer microstructures. Adjacent structural layers in these multi-layered mirror microstructures may be structurally reinforced and interconnected by a plurality of vertically disposed columns, or by a plurality of at least generally laterally extending rails or ribs, or some combination thereof. Various embodiments of a single layered mirror microstructure with a structural reinforcement assembly that cantilevers from a lower surface thereof is also disclosed.
    Type: Grant
    Filed: April 23, 2001
    Date of Patent: July 29, 2003
    Assignee: Memx, Inc.
    Inventors: Jeffry J. Sniegowski, M. Steven Rodgers
  • Patent number: 6545385
    Abstract: A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: April 8, 2003
    Assignee: Sandia Corporation
    Inventors: Samuel Lee Miller, Paul Jackson McWhorter, Murray Steven Rodgers, Jeffry J. Sniegowski, Stephen M. Barnes
  • Publication number: 20020171327
    Abstract: A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with-the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.
    Type: Application
    Filed: July 9, 2002
    Publication date: November 21, 2002
    Inventors: Samuel Lee Miller, Paul Jackson McWhorter, Murray Steven Rodgers, Jeffry J. Sniegowski, Stephen M. Barnes
  • Publication number: 20020154422
    Abstract: Various embodiments of reinforced mirror microstructures for a surface micromachined optical system are disclosed. Multi-layered and structurally reinforced mirror microstructures are disclosed, including both two and three-layer microstructures. Adjacent structural layers in these multi-layered mirror microstructures may be structurally reinforced and interconnected by a plurality of vertically disposed columns, or by a plurality of at least generally laterally extending rails or ribs, or some combination thereof. Various embodiments of a single layered mirror microstructure with a structural reinforcement assembly that cantilevers from a lower surface thereof is also disclosed.
    Type: Application
    Filed: April 23, 2001
    Publication date: October 24, 2002
    Inventors: Jeffry J. Sniegowski, M. Steven Rodgers
  • Publication number: 20020155717
    Abstract: Various methods for forming surface micromachined microstructures are disclosed. One aspect relates to executing surface micromachining operation to structurally reinforce at least one structural layer in a microstructure. Another aspect relates to executing the surface micromachining operation to form a plurality of at least generally laterally extending etch release channels within a sacrificial material to facilitate the release of the corresponding microstructure.
    Type: Application
    Filed: April 23, 2001
    Publication date: October 24, 2002
    Inventors: Jeffry J. Sniegowski, M. Steven Rodgers
  • Publication number: 20020096018
    Abstract: A surface-micromachined rotatable member formed on a substrate and a method for manufacturing thereof are disclosed. The surface-micromachined rotatable member, which can be a gear or a rotary stage, has a central hub, and an annulus connected to the central hub by an overarching bridge. The hub includes a stationary axle support attached to the substrate and surrounding an axle. The axle is retained within the axle support with an air-gap spacing therebetween of generally 0.3 &mgr;m or less. The rotatable member can be formed by alternately depositing and patterning layers of a semiconductor (e.g. polysilicon or a silicon-germanium alloy) and a sacrificial material and then removing the sacrificial material, at least in part. The present invention has applications for forming micromechanical or microelectromechanical devices requiring lower actuation forces, and providing improved reliability.
    Type: Application
    Filed: March 18, 2002
    Publication date: July 25, 2002
    Inventors: M. Steven Rodgers, Jeffry J. Sniegowski, Thomas W. Krygowski
  • Patent number: 6402969
    Abstract: A surface-micromachined rotatable member formed on a substrate and a method for manufacturing thereof are disclosed. The surface-micromachined rotatable member, which can be a gear or a rotary stage, has a central hub, and an annulus connected to the central hub by an overarching bridge. The hub includes a stationary axle support attached to the substrate and surrounding an axle. The axle is retained within the axle support with an air-gap spacing therebetween of generally 0.3 &mgr;m or less. The rotatable member can be formed by alternately depositing and patterning layers of a semiconductor (e.g. polysilicon or a silicon-germanium alloy) and a sacrificial material and then removing the sacrificial material, at least in part. The present invention has applications for forming micromechanical or microelectromechanical devices requiring lower actuation forces, and providing improved reliability.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: June 11, 2002
    Assignee: Sandia Corporation
    Inventors: M. Steven Rodgers, Jeffry J. Sniegowski
  • Patent number: 6350015
    Abstract: The systems and methods of the present invention operate by magnetically driving a fluid ejector. In various exemplary embodiments, a primary coil and a secondary coil are situated in the ejector. The ejector has a movable piston usable to eject fluid through a nozzle hole. The piston may be resiliently mounted and biased to an at-rest position. A drive signal is applied to cause current to flow in the primary coil. The current flow generates a magnetic field that induces a current in the secondary coil. Either the primary coil or the secondary coil or associated with the piston and the other is associated with a fixed structure of the ejector. As a result, a magnetic force is generated that pushes the piston either toward a faceplate so that a drop of fluid is ejected through the nozzle hole in the faceplate or away from the faceplate so that fluid fills in a fluid chamber between the piston and the faceplate.
    Type: Grant
    Filed: November 24, 2000
    Date of Patent: February 26, 2002
    Assignee: Xerox Corporation
    Inventors: Arthur M. Gooray, George J. Roller, Joseph M. Crowley, Jr., Paul C. Galambos, Frank J. Peter, Kevin R. Zavadil, Richard C. Givler, D. Russell Humphreys, Jeffry J. Sniegowski
  • Publication number: 20010048265
    Abstract: A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.
    Type: Application
    Filed: April 5, 2001
    Publication date: December 6, 2001
    Inventors: Samuel Lee Miller, Paul Jackson McWhorter, Murray Steven Rodgers, Jeffry J. Sniegowski, Stephen M. Barnes
  • Patent number: 6290859
    Abstract: A process is disclosed whereby a 5-50-nanometer-thick conformal tungsten coating can be formed over exposed semiconductor surfaces (e.g. silicon, germanium or silicon carbide) within a microelectromechanical (MEM) device for improved wear resistance and reliability. The tungsten coating is formed after cleaning the semiconductor surfaces to remove any organic material and oxide film from the surface. A final in situ cleaning step is performed by heating a substrate containing the MEM device to a temperature in the range of 200-600 ° C. in the presence of gaseous nitrogen trifluoride (NF3). The tungsten coating can then be formed by a chemical reaction between the semiconductor surfaces and tungsten hexafluoride (WF6) at an elevated temperature, preferably about 450° C. The tungsten deposition process is self-limiting and covers all exposed semiconductor surfaces including surfaces in close contact.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: September 18, 2001
    Assignee: Sandia Corporation
    Inventors: James G. Fleming, Seethambal S. Mani, Jeffry J. Sniegowski, Robert S. Blewer
  • Patent number: 6174820
    Abstract: The use of silicon oxynitride (SiOxNy) as a sacrificial material for forming a microelectromechanical (MEM) device is disclosed. Whereas conventional sacrificial materials such as silicon dioxide and silicate glasses are compressively strained, the composition of silicon oxynitride can be selected to be either tensile-strained or substantially-stress-free. Thus, silicon oxynitride can be used in combination with conventional sacrificial materials to limit an accumulation of compressive stress in a MEM device; or alternately the MEM device can be formed entirely with silicon oxynitride.
    Type: Grant
    Filed: February 16, 1999
    Date of Patent: January 16, 2001
    Assignee: Sandia Corporation
    Inventors: Scott D. Habermehl, Jeffry J. Sniegowski
  • Patent number: 6082208
    Abstract: A process for forming complex microelectromechanical (MEM) devices having five layers or levels of polysilicon, including four structural polysilicon layers wherein mechanical elements can be formed, and an underlying polysilicon layer forming a voltage reference plane. A particular type of MEM device that can be formed with the five-level polysilicon process is a MEM transmission for controlling or interlocking mechanical power transfer between an electrostatic motor and a self-assembling structure (e.g. a hinged pop-up mirror for use with an incident laser beam). The MEM transmission is based on an incomplete gear train and a bridging set of gears that can be moved into place to complete the gear train to enable power transfer. The MEM transmission has particular applications as a safety component for surety, and for this purpose can incorporate a pin-in-maze discriminator responsive to a coded input signal.
    Type: Grant
    Filed: April 1, 1998
    Date of Patent: July 4, 2000
    Assignee: Sandia Corporation
    Inventors: M. Steven Rodgers, Jeffry J. Sniegowski, Samuel L. Miller, Paul J. McWhorter
  • Patent number: 5920067
    Abstract: An improved test structure for measurement of width of conductive lines formed on substrates as performed in semiconductor fabrication, and an improved reference grid for calibrating instruments for such measurements, is formed from a monocrystalline starting material, having an insulative layer formed beneath its surface by ion implantation or the equivalent, leaving a monocrystalline layer on the surface. The monocrystalline surface layer is then processed by preferential etching to accurately define components of the test structure. The substrate can be removed from the rear side of the insulative layer to form a transparent window, such that the test structure can be inspected by transmissive-optical techniques. Measurements made using electrical and optical techniques can be correlated with other measurements, including measurements made using scanning probe microscopy.
    Type: Grant
    Filed: May 21, 1997
    Date of Patent: July 6, 1999
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Michael W. Cresswell, R. N. Ghoshtagore, Loren W. Linholm, Richard A. Allen, Jeffry J. Sniegowski, William B. Penzes, Michael Gaitan
  • Patent number: 5804084
    Abstract: A process for removing topography effects during fabrication of micromachines. A sacrificial oxide layer is deposited over a level containing functional elements with etched valleys between the elements such that the sacrificial layer has sufficient thickness to fill the valleys and extend in thickness upwards to the extent that the lowest point on the upper surface of the oxide layer is at least as high as the top surface of the functional elements in the covered level. The sacrificial oxide layer is then polished down and planarized by chemical-mechanical polishing. Another layer of functional elements is then formed upon this new planarized surface.
    Type: Grant
    Filed: October 11, 1996
    Date of Patent: September 8, 1998
    Assignee: Sandia Corporation
    Inventors: Robert D. Nasby, Dale L. Hetherington, Jeffry J. Sniegowski, Paul J. McWhorter, Christopher A. Apblett
  • Patent number: 5798283
    Abstract: A method for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry.
    Type: Grant
    Filed: September 6, 1995
    Date of Patent: August 25, 1998
    Assignee: Sandia Corporation
    Inventors: Stephen Montague, James H. Smith, Jeffry J. Sniegowski, Paul J. McWhorter
  • Patent number: 5783340
    Abstract: A method is disclosed for photolithographically defining device features up to the resolution limit of an auto-focusing projection stepper when the device features are to be formed in a wafer cavity at a depth exceeding the depth of focus of the stepper. The method uses a focusing cavity located in a die field at the position of a focusing light beam from the auto-focusing projection stepper, with the focusing cavity being of the same depth as one or more adjacent cavities wherein a semiconductor device is to be formed. The focusing cavity provides a bottom surface for referencing the focusing light beam and focusing the stepper at a predetermined depth below the surface of the wafer, whereat the device features are to be defined.
    Type: Grant
    Filed: July 31, 1997
    Date of Patent: July 21, 1998
    Assignee: Sandia Corporation
    Inventors: Anthony J. Farino, Stephen Montague, Jeffry J. Sniegowski, James H. Smith, Paul J. McWhorter
  • Patent number: 5684301
    Abstract: An improved test structure for measurement of width of conductive lines formed on substrates as performed in semiconductor fabrication, and for calibrating instruments for such measurements, is formed from a monocrystalline starting material, having an insulative layer formed beneath its surface by ion implantation or the equivalent, leaving a monocrystalline layer on the surface. The monocrystalline surface layer is then processed by preferential etching to accurately define components of the test structure. The substrate can be removed from the rear side of the insulative layer to form a transparent window, such that the test structure can be inspected by transmissive-optical techniques. Measurements made using electrical and optical techniques can be correlated with other measurements, including measurements made using scanning probe microscopy.
    Type: Grant
    Filed: March 23, 1995
    Date of Patent: November 4, 1997
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Michael W. Cresswell, R. N. Ghoshtagore, Loren W. Linholm, Richard A. Allen, Jeffry J. Sniegowski