Patents by Inventor Jennifer Lewis

Jennifer Lewis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200130261
    Abstract: A shape-shifting structured lattice comprises a printed lattice including printed ribs joined at nodes. Each printed rib has a predetermined sweep angle {tilde over (?)}i between adjacent nodes and a bilayer structure including at least two printed filaments in contact along a length thereof. The at least two printed filaments comprise different linear coefficients of thermal expansion and/or different values of elastic modulus. When exposed to a stimulus, the printed lattice adopts a predetermined three-dimensional geometry.
    Type: Application
    Filed: October 23, 2019
    Publication date: April 30, 2020
    Applicants: President and Fellows of Harvard College, Massachusetts Institute of Technology
    Inventors: Jennifer A. Lewis, Lakshminarayanan Mahadevan, J. William Boley, Willem M. van Rees
  • Patent number: 10612986
    Abstract: A printed stretchable strain sensor comprises a seamless elastomeric body and a strain-sensitive conductive structure embedded in the seamless elastomeric body. The strain-sensitive conductive structure comprises one or more conductive filaments arranged in a continuous pattern. A method of printing a stretchable strain sensor comprises depositing one or more conductive filaments in a predetermined continuous pattern into or onto a support matrix. After the depositing, the support matrix is cured to embed a strain-sensitive conductive structure in a seamless elastomeric body.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: April 7, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: Jennifer A. Lewis, Joseph T. Muth, Daniel M. Vogt, Ryan L. Truby, Yigit Menguc, David B. Kolesky, Robert J. Wood
  • Patent number: 10597545
    Abstract: A foam ink composition for printing porous structures comprises stabilizing particles and gas bubbles dispersed in a solvent. The stabilizing particles comprise a predetermined interfacial energy so as to exhibit a contact angle with the solvent of from about 15° to about 90°. At least a portion of the stabilizing particles are positioned at interfacial regions between the solvent and the gas bubbles, thereby stabilizing the gas bubbles in the foam ink composition. A 3D printed hierarchical porous structure comprises one or more continuous filaments arranged in a predetermined pattern on a substrate, the one or more continuous filaments comprising a sintered material and including a porosity of at least about 40 vol. %.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: March 24, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: Jennifer A. Lewis, Joseph T. Muth
  • Publication number: 20200086564
    Abstract: In one aspect, the present disclosure provides a nozzle for a 3D printing system. The nozzle may include a flowpath with a material inlet and a material outlet. The nozzle may further include a valve in fluid communication with the flowpath between the material inlet and the material outlet, where the valve includes a closed state and an open state, where in the closed state the valve obstructs the flowpath between the material inlet and the material outlet, and where in the open state the material inlet is in fluid communication with the material outlet. The nozzle may further include a compensator in fluid communication with the flowpath, where the compensator includes a contracted state associated with the open state of the valve and an expanded state associated with the closed state of the valve.
    Type: Application
    Filed: December 5, 2017
    Publication date: March 19, 2020
    Applicant: President and Fellows of Harvard College
    Inventors: Jennifer A. Lewis, Mark Andrew Skylar-Scott, Jochen Mueller
  • Patent number: 10590294
    Abstract: A rapid, scalable methodology for graphene dispersion and concentration with a polymer-organic solvent medium, as can be utilized without centrifugation, to enhance graphene concentration.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: March 17, 2020
    Assignees: NORTHWESTERN UNIVERSITY, PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Mark C. Hersam, Yu Teng Liang, Ethan B. Secor, Pradyumna L. Prabhumirashi, Kanan P. Puntambekar, Michael L. Geier, Bok Y. Ahn, Jennifer A. Lewis
  • Publication number: 20200070402
    Abstract: A 3D printed core-shell filament comprises an elongated core radially surrounded by an outer shell with a barrier layer in between, where the elongated core comprises a ductile polymer and the outer shell comprises a stiff polymer having a Young's modulus higher than that of the ductile polymer. A lightweight lattice structure may comprise a plurality of the 3D printed core-shell filaments deposited in layers.
    Type: Application
    Filed: December 5, 2017
    Publication date: March 5, 2020
    Applicant: ETH Zurich (Swiss Federal Institute of Technology)
    Inventors: Jennifer A. Lewis, Jochen Mueller, Jordan R. Raney, Kristina Shea
  • Publication number: 20200061910
    Abstract: In one aspect, the present disclosure provides a nozzle for 3-D printing. The nozzle may include a first nozzle tip defining a first outlet, where the first nozzle tip includes a first channel extending therethrough. The nozzle may further include a second nozzle tip defining a second outlet, where the second nozzle tip includes a second channel extending therethrough, and where the first channel surrounds the second outlet. The second nozzle tip may be retracted longitudinally with respect to the first nozzle tip such that the second outlet of the second nozzle tip is located in the first channel.
    Type: Application
    Filed: December 5, 2017
    Publication date: February 27, 2020
    Applicants: President and Fellows of Harvard College, ETH Zurich (Swiss Federal Institute of Technology)
    Inventors: Jennifer A. Lewis, Jochen Mueller, Jordan R. Raney, Kristina Shea
  • Patent number: 10464031
    Abstract: A microfluidic printing nozzle for 3D printing may include a mixing chamber, a first inlet for connecting with a first ink source, the first inlet located at a first end of the mixing chamber, and a second inlet for connecting with a second ink source, the second inlet located at the first end of the mixing chamber. An outlet may be located at a second end of the mixing chamber, and a generally cylindrical impeller may be rotatably disposed in the mixing chamber between the first end and the second end. The cylindrical impeller may include an outer surface, and the outer surface of the impeller includes a groove, a protrusion, or both, to facilitate mixing of fluidic inks flowing from the first end to the second end of the mixing chamber.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: November 5, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Jennifer A. Lewis, Thomas J. Ober
  • Patent number: 10462907
    Abstract: A printed 3D functional part includes a 3D structure comprising a structural material, and at least one functional electronic device is at least partially embedded in the 3D structure. The functional electronic device has a base secured against an interior surface of the 3D structure. One or more conductive filaments are at least partially embedded in the 3D structure and electrically connected to the at least one functional electronic device.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: October 29, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Jennifer A. Lewis, Michael A. Bell, Travis A. Busbee, John E. Minardi, II
  • Publication number: 20190300741
    Abstract: A 3-D printed device comprising one or more interconnect structures, the interconnect structures comprising a plurality of conductive particles and one or more diblock or triblock copolymers; the diblock or triblock copolymers having an A-B, A-B-A, or A-B-C block-type structure in which the A-blocks and C-blocks are an aromatic-based polymer or an acrylate-based polymer and the B-blocks are an aliphatic-based polymer. These 3-D printed devices may be formed using a method that comprises providing a conductive ink composition; applying the conductive ink composition to a substrate in a 3-D solvent cast printing process to form one or more interconnect structures; and drying the one or more interconnect structures formed from the conductive ink composition. The dried interconnect structures exhibit a conductivity equal to or greater than 1×105 S/m without having to be subjected to any post-processing sintering treatment.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 3, 2019
    Inventors: Bradley P. DUNCAN, Maxwell E. PLAUT, Theodore H. FEDYNYSHYN, Jennifer A. LEWIS
  • Publication number: 20190242878
    Abstract: Aspects of the present invention provide improved methods and apparatus for use in in vitro modeling of the interaction of cells with cellular constructs/parts/axons, including axon mimetics and use of three-dimensional fibers.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 8, 2019
    Inventors: Krystyn J. Van Vliet, Anna Jagielska, Kimberly Homan, Jennifer A. Lewis, Travis Alexander Busbee
  • Publication number: 20190224370
    Abstract: Described are devices and methods for use in connection with organ replacement or organ assist therapy in a patient.
    Type: Application
    Filed: September 6, 2017
    Publication date: July 25, 2019
    Applicant: President and Fellows of Harvard College
    Inventors: David B. KOLESKY, Kimberly A. HOMAN, Jennifer A. LEWIS, Yen-Chih LIN
  • Publication number: 20190160813
    Abstract: A method of acoustophoretic printing comprises generating an acoustic field at a first end of an acoustic chamber fully or partially enclosed by sound-reflecting walls. The acoustic field interacts with the sound-reflecting walls and travels through the acoustic chamber. The acoustic field is enhanced in a chamber outlet at a second end of the acoustic chamber. An ink is delivered into a nozzle positioned within the acoustic chamber. The nozzle has a nozzle opening projecting into the chamber outlet. The ink travels through the nozzle and is exposed to the enhanced acoustic field at the nozzle opening, and a predetermined volume of the ink is ejected from the nozzle opening and out of the acoustic chamber.
    Type: Application
    Filed: July 24, 2017
    Publication date: May 30, 2019
    Applicant: President and Fellows of Harvard College
    Inventors: Daniele Foresti, Jennifer A. Lewis, Armand Kurum
  • Publication number: 20190105622
    Abstract: A microfluidic printing nozzle for 3D printing may include a mixing chamber, a first inlet for connecting with a first ink source, the first inlet located at a first end of the mixing chamber, and a second inlet for connecting with a second ink source, the second inlet located at the first end of the mixing chamber. An outlet may be located at a second end of the mixing chamber, and a generally cylindrical impeller may be rotatably disposed in the mixing chamber between the first end and the second end. The cylindrical impeller may include an outer surface, and the outer surface of the impeller includes a groove, a protrusion, or both, to facilitate mixing of fluidic inks flowing from the first end to the second end of the mixing chamber.
    Type: Application
    Filed: September 10, 2018
    Publication date: April 11, 2019
    Inventors: Jennifer A. Lewis, Thomas J. Ober
  • Publication number: 20190094089
    Abstract: A printed stretchable strain sensor comprises a seamless elastomeric body and a strain-sensitive conductive structure embedded in the seamless elastomeric body. The strain-sensitive conductive structure comprises one or more conductive filaments arranged in a continuous pattern. A method of printing a stretchable strain sensor comprises depositing one or more conductive filaments in a predetermined continuous pattern into or onto a support matrix. After the depositing, the support matrix is cured to embed a strain-sensitive conductive structure in a seamless elastomeric body.
    Type: Application
    Filed: October 11, 2018
    Publication date: March 28, 2019
    Applicant: President and Fellows of Harvard College
    Inventors: Jennifer A. Lewis, Joseph T. Muth, Daniel M. Vogt, Ryan L. Truby, Yigit Menguc, David B. Kolesky, Robert J. Wood
  • Publication number: 20190070786
    Abstract: A present disclosure relates to a system for automatic design and manufacturing of 3D printing units and 3D products. The system is configured to obtain specification of a target structure corresponding to a 3D product; automatically determine a design and a printing path of a 3D printing unit based on the specification of the target structure, wherein the 3D printing unit is a micronozzle unit configured to print the target structure of the 3D product; automatically determine a manufacturing procedure to print the 3D printing unit based on the specification of the target structure; and instruct a 3D printer to print the 3D printing unit according to the manufacturing procedure and the printing path of the 3D printing unit.
    Type: Application
    Filed: March 3, 2017
    Publication date: March 7, 2019
    Inventors: Jennifer A. Lewis, Mark Andrew Skylar-Scott, Jochen Mueller, David Kolesky
  • Publication number: 20190022283
    Abstract: A printed tissue construct comprises one or more tissue patterns, where each tissue pattern comprises a plurality of viable cells of one or more predetermined cell types. A network of vascular channels interpenetrates the one or more tissue patterns. An extracellular matrix composition at least partially surrounds the one or more tissue patterns and the network of vascular channels. A method of printing a tissue construct with embedded vasculature comprises depositing one or more cell-laden filaments, each comprising a plurality of viable cells, on a substrate to form one or more tissue patterns. Each of the one or more tissue patterns comprises one or more predetermined cell types. One or more sacrificial filaments, each comprising a fugitive ink, are deposited on the substrate to form a vascular pattern interpenetrating the one or more tissue patterns. The vascular pattern and the one or more tissue patterns are at least partially surrounded with an extracellular matrix composition.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 24, 2019
    Applicant: President and Fellows of Harvard College
    Inventors: Jennifer A. LEWIS, David B. KOLESKY, Mark A. SKYLAR-SCOTT, Kimberly A. HOMAN, Ryan L. TRUBY, Amelia Sydney GLADMAN
  • Patent number: 10151649
    Abstract: A printed stretchable strain sensor comprises a seamless elastomeric body and a strain-sensitive conductive structure embedded in the seamless elastomeric body. The strain-sensitive conductive structure comprises one or more conductive filaments arranged in a continuous pattern. A method of printing a stretchable strain sensor comprises depositing one or more conductive filaments in a predetermined continuous pattern into or onto a support matrix. After the depositing, the support matrix is cured to embed a strain-sensitive conductive structure in a seamless elastomeric body.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: December 11, 2018
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Jennifer A. Lewis, Joseph T. Muth, Daniel M. Vogt, Ryan L. Truby, Yigit Menguc, David B. Kolesky, Robert J. Wood
  • Publication number: 20180318755
    Abstract: Method and apparatus for separating a target substance from a fluid or mixture. Capsules having a coating and stripping solvents encapsulated in the capsules are provided. The coating is permeable to the target substance. The capsules having a coating and stripping solvents encapsulated in the capsules are exposed to the fluid or mixture. The target substance migrates through the coating and is taken up by the stripping solvents. The target substance is separated from the fluid or mixture by driving off the target substance from the capsules.
    Type: Application
    Filed: July 16, 2018
    Publication date: November 8, 2018
    Inventors: Roger D. Aines, Christopher M. Spadaccini, Joshuah K. Stolaroff, William L. Bourcier, Jennifer A. Lewis, Eric B. Duoss, John J. Vericella
  • Patent number: 10117968
    Abstract: A printed tissue construct comprises one or more tissue patterns, where each tissue pattern comprises a plurality of viable cells of one or more predetermined cell types. A network of vascular channels interpenetrates the one or more tissue patterns. An extracellular matrix composition at least partially surrounds the one or more tissue patterns and the network of vascular channels. A method of printing a tissue construct with embedded vasculature comprises depositing one or more cell-laden filaments, each comprising a plurality of viable cells, on a substrate to form one or more tissue patterns. Each of the one or more tissue patterns comprises one or more predetermined cell types. One or more sacrificial filaments, each comprising a fugitive ink, are deposited on the substrate to form a vascular pattern interpenetrating the one or more tissue patterns. The vascular pattern and the one or more tissue patterns are at least partially surrounded with an extracellular matrix composition.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: November 6, 2018
    Assignee: President And Fellows Of Harvard College
    Inventors: Jennifer A. Lewis, David B. Kolesky, Mark A. Skylar-Scott, Kimberly A. Homan, Ryan L. Truby, Amelia Sydney Gladman