Patents by Inventor Jens Geiger

Jens Geiger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170248472
    Abstract: The present disclosure describes optical radiation sensors and detection techniques that facilitate assigning a specific wavelength to a measured photocurrent. The techniques can be used to determine the spectral emission characteristics of a radiation source. In one aspect, a method of determining spectral emission characteristics of incident radiation includes sensing at least some of the incident radiation using a light detector having first and second photosensitive regions whose optical responsivity characteristics differ from one another. The method further includes identifying a wavelength of the incident radiation based on a ratio of a photocurrent from the first region and a photocurrent from the second region.
    Type: Application
    Filed: September 8, 2015
    Publication date: August 31, 2017
    Inventors: Peter Roentgen, Jens Geiger, Markus Rossi
  • Patent number: 9711552
    Abstract: Optoelectronic modules include a silicon substrate in which or on which there is an optoelectronic device. An optics assembly is disposed over the optoelectronic device, and a spacer separates the silicon substrate from the optics assembly. Methods of fabricating such modules also are described.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: July 18, 2017
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Mario Cesana, Jens Geiger, Peter Roentgen, Vincenzo Condorelli
  • Patent number: 9658109
    Abstract: Compact thermal sensor modules, which in some implementations can be manufactured in wafer-level fabrication processes, include features composed of or coated with a low-emissivity material to reduce or prevent detection by a sensor of radiation emitted by other parts of the module. For example, spacers that separate an optics substrate and a sensor package from one another can be composed of or coated with such a low emissivity material. In some cases, the low emissivity material has an emissivity of no more than 0.1.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: May 23, 2017
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventor: Jens Geiger
  • Publication number: 20170135617
    Abstract: The present disclosure describes modules operable to perform optical sensing. The module can be operable to distinguish between signals indicative of reflections from an object or interest and signals indicative of a spurious reflection such as from a smudge (i.e., a blurred or smeared mark) on the host device's cover glass. Signals assigned to reflections from the object of interest can be used to for various purposes, depending on the application (e.g., determining an object's proximity, a person's heart rate or a person's blood oxygen level).
    Type: Application
    Filed: July 13, 2015
    Publication date: May 18, 2017
    Inventors: Jukka Alasirniö, Tobias Senn, Mario Cesana, Hartmut Rudmann, Markus Rossi, Peter Roentgen, Daniel Pérez Calero, Bassam Hallal, Jens Geiger
  • Patent number: 9613939
    Abstract: Opto-electronic modules, which can be fabricated in a wafer-scale process, include light emitting and/or light sensing devices mounted on or in a substrate. The modules, which can include various features to help reduce the occurrence of optical cross-talk and help prevent interference from stray light, can be used in a wide range of applications, including medical and health-related applications. For example, performing a measurement on a human body can include bringing a portion of the human body into direct contact with an exterior surface of the opto-electronic module and using a differential optical absorption spectroscopy technique to obtain an indication of a physical condition of the human body.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: April 4, 2017
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Markus Rossi, Jens Geiger
  • Publication number: 20170089757
    Abstract: An optoelectronic module that includes a reflectance member which exhibits mitigated or eliminated fan-out field-of-view overlap can be concealed or its visual impact minimized compared to a host device in which the optoelectronic module is mounted. In some instances, the reflectance member can be implemented as a plurality of through holes and in other instances the reflectance member may be a contiguous spin-coated polymeric coating. In general, the reflectance member can be diffusively reflective to the same particular wavelengths or ranges of wavelengths as the host device in which it is mounted.
    Type: Application
    Filed: September 23, 2016
    Publication date: March 30, 2017
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Jens Geiger, Frank Sobel, Rene Kromhof, Alberto Soppelsa, Kevin Hauser, Robert Lenart
  • Patent number: 9608181
    Abstract: Opto-electronic modules include masking features that can help reduce the visibility of interior components or enhance the outer appearance of the module or of an appliance incorporating the module as a component. The modules can include an optical diode or saturable optical absorber.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: March 28, 2017
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Jens Geiger, René Kromhof
  • Publication number: 20170084663
    Abstract: Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
    Type: Application
    Filed: December 2, 2016
    Publication date: March 23, 2017
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Sonja Hanselmann, Christoph Friese, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
  • Publication number: 20170047487
    Abstract: Light emitting modules, such as flash modules, include features to help reduce the visual impact of interior components and shield them from view. The features also may enhance the outer appearance of the module or of an appliance incorporating the module.
    Type: Application
    Filed: April 14, 2015
    Publication date: February 16, 2017
    Inventors: Markus Rossi, Jens Geiger, Jonathan Hobbis, René Kromhof, Olivier Ripoll
  • Patent number: 9543354
    Abstract: Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: January 10, 2017
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Sonja Hanselmann, Christoph Friese, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
  • Publication number: 20160293585
    Abstract: Compact optoelectronic modules are described that, in some implementations, can have reduced heights, while at the same time having very little optical crosstalk or detection of stray light. An optoelectronic module having optical channel can include a support on which is mounted an optoelectronic device arranged to emit or detect light at a particular one or more wavelengths. The module has a cover including an optically transmissive portion over the optoelectronic device. The optically transmissive portion is surrounded laterally by sections of the cover that are substantially non-transparent to the one or more wavelengths. A passive optical element is present on a surface of the optically transmissive portion. A spacer separates the support from the cover. The cover can be relatively thin so that the overall height of the module is relatively small.
    Type: Application
    Filed: November 18, 2014
    Publication date: October 6, 2016
    Inventor: Jens Geiger
  • Publication number: 20160223746
    Abstract: The waveguide structure can be manufactured on wafer-scale and comprises a holding structure and a first and a second waveguides each having a core and two end faces. The holding structure comprises a separation structure being arranged between the first and the second waveguide and provides an optical separation between the first and the second waveguide in a region between the end faces of the first and second waveguides. A method for manufacturing such a waveguide structure with at least one waveguide comprises shaping replication material by means of tool structures to obtain the end faces, hardening the replication material and removing the tool structures from a waveguide structures wafer comprising a plurality of so-obtained waveguides.
    Type: Application
    Filed: February 3, 2016
    Publication date: August 4, 2016
    Inventors: Simon Gubser, Frank Sobel, Alexander Bietsch, Jens Geiger
  • Publication number: 20160216777
    Abstract: The sensor (1) for determining an orientation of the sensor in a gravity field comprises a ball (2) and a rolling surface (R) describing a generally concave shape on which the ball can roll inside the sensor. A further surface (F) is arranged opposite said rolling surface, and a light emitter (E), a light detector (D) and another light emitter or detector is provided. A region (R) within which the ball (2) can move is limited by at least the rolling surface (R) and the further surface (F). And the light emitters (E) and detectors (D) are arranged outside the region (R) for emitting light through the rolling surface (R) into said region and detecting light exiting the region (3) through the rolling surface (R) or for emitting light through the further surface (F) into said region (R) and detecting light exiting said region (R) through the further surface (F). Corresponding measuring methods and manufacturing methods are described, too.
    Type: Application
    Filed: July 17, 2014
    Publication date: July 28, 2016
    Inventors: Jens Geiger, Susanne Westenhöfer
  • Publication number: 20160112808
    Abstract: A method of fabricating a plurality of MEMS microphone modules by providing a first substrate wafer 62 on which are mounted a plurality of sets comprising an LED 102, an IC chip 22 and a MEM microphone device 24, where the LED 102 and IC chip 22 are surrounded and separated by first spacers 104, 64A, 64, the spacer 104 being much taller, attaching a second substrate on top of the first spacer elements above the IC chip 22, mounting a MEMS microphone device 24 to the second substrate 60, the second substrate not extending over the LED 102, surrounding the MEMS microphone device by second spacers 32A, 32, attaching a cover wafer 28 across the whole first substrate wafer 62 covering all the plurality of sets, forming openings 30 to the MEMS cavities, dividing the substrate wafer 62 into individual MEMS microphone modules through the width of the separating spacers 104, 32, 64. Conductive traces may extend through the spacers.
    Type: Application
    Filed: May 26, 2014
    Publication date: April 21, 2016
    Inventors: Jens GEIGER, Markus ROSSI, Hartmut RUDMANN
  • Patent number: 9285265
    Abstract: Compact optoelectronic modules are described and can be used in various electronic or other appliances, such as television units. For example, a light emitting device, a first sensor or sensor module such as an infra-red sensor or an infra-red receiver module, and a second sensor or sensor module such as an ambient light sensor or ambient light sensor module, can be integrated into a single compact optoelectronic module. Multiple such optoelectronic modules can be fabricated in a wafer-level process.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: March 15, 2016
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Jens Geiger, Susanne Westenhöfer
  • Publication number: 20160072029
    Abstract: Opto-electronic modules include masking features that can help reduce the visibility of interior components or enhance the outer appearance of the module or of an appliance incorporating the module as a component. The modules can include an optical diode or saturable optical absorber.
    Type: Application
    Filed: December 17, 2013
    Publication date: March 10, 2016
    Inventors: Jens Geiger, René Kromhof
  • Publication number: 20160056194
    Abstract: Optoelectronic modules include a silicon substrate in which or on which there is an optoelectronic device. An optics assembly is disposed over the optoelectronic device, and a spacer separates the silicon substrate from the optics assembly. Methods of fabricating such modules also are described.
    Type: Application
    Filed: August 11, 2015
    Publication date: February 25, 2016
    Inventors: Hartmut Rudmann, Mario Cesana, Jens Geiger, Peter Roentgen, Vincenzo Condorelli
  • Publication number: 20160041038
    Abstract: Compact thermal sensor modules, which in some implementations can be manufactured in wafer-level fabrication processes, include features composed of or coated with a low-emissivity material to reduce or prevent detection by a sensor of radiation emitted by other parts of the module. For example, spacers that separate an optics substrate and a sensor package from one another can be composed of or coated with such a low emissivity material. In some cases, the low emissivity material has an emissivity of no more than 0.1.
    Type: Application
    Filed: March 12, 2014
    Publication date: February 11, 2016
    Inventor: Jens Geiger
  • Publication number: 20150340351
    Abstract: Opto-electronic modules, which can be fabricated in a wafer-scale process, include light emitting and/or light sensing devices mounted on or in a substrate. The modules, which can include various features to help reduce the occurrence of optical cross-talk and help prevent interference from stray light, can be used in a wide range of applications, including medical and health-related applications. For example, performing a measurement on a human body can include bringing a portion of the human body into direct contact with an exterior surface of the opto-electronic module and using a differential optical absorption spectroscopy technique to obtain an indication of a physical condition of the human body.
    Type: Application
    Filed: January 2, 2014
    Publication date: November 26, 2015
    Inventors: Markus ROSSI, Jens GEIGER
  • Publication number: 20150325613
    Abstract: Optoelectronic modules include an optoelectronic device and a transparent cover. A non-transparent material is provided on the sidewalls of the transparent cover, which can help reduce light leakage from the sides of the transparent cover or can help reduce stray light from entering the module. The modules can be fabricated, for example, in wafer-level processes. In some implementations, openings such as trenches are formed in a transparent wafer. The trenches then can be filled with a non-transparent material using, for example, a vacuum injection tool. When a wafer-stack including the trench-filled transparent wafer subsequently is separated into individual modules, the result is that each module can include a transparent cover having sidewalls that are covered by the non-transparent material.
    Type: Application
    Filed: June 18, 2015
    Publication date: November 12, 2015
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong