Patents by Inventor Jeremy Agresti

Jeremy Agresti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230152202
    Abstract: Hydrogel particles and their use in cytometric applications are described. The hydrogel particles described herein are selectively tunable to have at least one optical property substantially similar to at least one optical property of a target cell. In this regard, the hydrogel particles provided herein, in one aspect, are used as a calibration reagent for the detection of a target cell in a sample.
    Type: Application
    Filed: November 18, 2022
    Publication date: May 18, 2023
    Applicant: Slingshot Biosciences, Inc.
    Inventors: Jeffrey KIM, Oliver LIU, Jeremy AGRESTI, Anh Tuan NGUYEN
  • Publication number: 20230154562
    Abstract: Provided herein are systems and methods for screening desirable biological variants using a high-throughput integrated system. The integrated system may be configured to input a plurality of parameters from functional studies of biological variants under applied conditions, in conjunction with integrated libraries of biological variants, and filter the inputs to produce desirable biological variants based on an input performance requirement. The system may output optimized strains, molecules, or novel molecules expected to have a desirable functional characteristic. Accordingly, the methods and systems disclosed herein enable multi-parametric studies of biological diversity and conditional diversity in systems biology.
    Type: Application
    Filed: December 20, 2022
    Publication date: May 18, 2023
    Inventors: Jeremy AGRESTI, Andres ORNELAS VARGAS, Kevin Gregory HOFF
  • Patent number: 11618024
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: April 4, 2023
    Assignees: President and Fellows of Harvard College, Brandeis University
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Publication number: 20230078810
    Abstract: The present invention relates to systems and methods for the arrangement of droplets in pre-determined locations. Many applications require the collection of time-resolved data. Examples include the screening of cells based on their growth characteristics or the observation of enzymatic reactions. The present invention provides a tool and related techniques which addresses this need, and which can be used in many other situations. The invention provides, in one aspect, a tool that allows for stable storage and indexing of individual droplets. The invention can interface not only with microfluidic/microscale equipment, but with macroscopic equipment to allow for the easy injection of liquids and extraction of sample droplets, etc.
    Type: Application
    Filed: October 12, 2022
    Publication date: March 16, 2023
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, Christian Boehm, Amy Rowat, Sarah Koester, Jeremy Agresti
  • Publication number: 20230067460
    Abstract: The present disclosure provides feeder hydrogel particles that can function to support the growth, proliferation, and/or activation of a target cell in culture. The present disclosure also provides methods of culturing target cells with feeder hydrogel particles.
    Type: Application
    Filed: October 28, 2022
    Publication date: March 2, 2023
    Inventors: Anh Tuan NGUYEN, Jeffrey KIM, Keunho AHN, Oliver LIU, Jeremy AGRESTI
  • Publication number: 20220396835
    Abstract: The present invention is generally related to systems and methods for producing a plurality of droplets. The droplets may contain varying species, e.g., for use as a library. In some cases, the fluidic droplets may be rigidified to form rigidified droplets (e.g., gel droplets). In certain embodiments, the droplets may undergo a phase change (e.g., from rigidified droplets to fluidized droplets), as discussed more herein. In some cases, a species may be added internally to a droplet by exposing the droplet to a fluid comprising a plurality of species.
    Type: Application
    Filed: June 24, 2022
    Publication date: December 15, 2022
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, Jeremy Agresti
  • Patent number: 11498072
    Abstract: The present invention relates to systems and methods for the arrangement of droplets in pre-determined locations. Many applications require the collection of time-resolved data. Examples include the screening of cells based on their growth characteristics or the observation of enzymatic reactions. The present invention provides a tool and related techniques which addresses this need, and which can be used in many other situations. The invention provides, in one aspect, a tool that allows for stable storage and indexing of individual droplets. The invention can interface not only with microfluidic/microscale equipment, but with macroscopic equipment to allow for the easy injection of liquids and extraction of sample droplets, etc.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: November 15, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Christian Boehm, Amy Rowat, Sarah Koester, Jeremy Agresti
  • Publication number: 20220260476
    Abstract: Hydrogel particles and their use in cytometric applications are described. The hydrogel particles described herein are selectively tunable to have at least one optical property substantially similar to at least one optical property of a target cell. In this regard, the hydrogel particles provided herein, in one aspect, are used as a calibration reagent for the detection of a target cell in a sample.
    Type: Application
    Filed: April 28, 2022
    Publication date: August 18, 2022
    Applicant: Slingshot Biosciences, Inc.
    Inventors: Jeffrey KIM, Oliver LIU, Jeremy AGRESTI, Anh Tuan NGUYEN
  • Patent number: 11401550
    Abstract: The present invention is generally related to systems and methods for producing a plurality of droplets. The droplets may contain varying species, e.g., for use as a library. In some cases, the fluidic droplets may be rigidified to form rigidified droplets (e.g., gel droplets). In certain embodiments, the droplets may undergo a phase change (e.g., from rigidified droplets to fluidized droplets), as discussed more herein. In some cases, a species may be added internally to a droplet by exposing the droplet to a fluid comprising a plurality of species.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: August 2, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Jeremy Agresti
  • Publication number: 20220212194
    Abstract: Various aspects of the present invention relate to the control and manipulation of fluidic species, for example, in microfluidic systems. In one set of embodiments, droplets may be sorted using surface acoustic waves. The droplets may contain cells or other species. In some cases, the surface acoustic waves may be created using a surface acoustic wave generator such as an interdigitated transducer, and/or a material such as a piezoelectric substrate. The piezoelectric substrate may be isolated front the microfluidic substrate except at or proximate the location where the droplets arc sorted, e.g., into first or second microfluidic channels. At such locations, the microfluidic substrate may be coupled to the piezoelectric substrate (or other material) by one or more coupling regions. In some cases, relatively high sorting rates may be achieved, e.g., at rates of at least about 1,000 Hz, at least about 10,000 Hz, or at least about 100,000 Hz, and in some embodiments, with high cell viability after sorting.
    Type: Application
    Filed: December 14, 2021
    Publication date: July 7, 2022
    Applicants: President and Fellows of Harvard College, Universität Augsburg
    Inventors: David A. Weitz, Thomas Franke, Achim Wixforth, Lothar Schmid, Jeremy Agresti, Adam R. Abate
  • Publication number: 20220178810
    Abstract: The present disclosure relates to compositions comprising a hydrogel particle with optical properties substantially similar to the optical properties of a target cell, and methods for their use.
    Type: Application
    Filed: September 10, 2021
    Publication date: June 9, 2022
    Applicant: SLINGSHOT BIOSCIENCES
    Inventors: Jeffrey KIM, Oliver LIU, Jeremy AGRESTI, Anh Tuan NGUYEN
  • Publication number: 20220112488
    Abstract: Methods and compositions are provided for making and using uniquely tagged target nucleic acid molecules.
    Type: Application
    Filed: December 29, 2021
    Publication date: April 14, 2022
    Inventors: Ronald LEBOFSKY, Jeremy AGRESTI
  • Publication number: 20220056435
    Abstract: Methods, compositions, and kits are provided for nucleic acid analysis, including single cell analysis.
    Type: Application
    Filed: September 23, 2021
    Publication date: February 24, 2022
    Inventors: Jeremy AGRESTI, Samantha COOPER, George KARLIN-NEUMANN, Nick HEREDIA, Ronald LEBOFSKY
  • Patent number: 11248227
    Abstract: Methods and compositions are provided for making and using uniquely tagged target nucleic acid molecules.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: February 15, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Ronald Lebofsky, Jeremy Agresti
  • Publication number: 20220042077
    Abstract: Improved multiple displacement amplification (MDA) reagents and methods are provided.
    Type: Application
    Filed: October 22, 2021
    Publication date: February 10, 2022
    Inventors: Ronald LEBOFSKY, Jeremy AGRESTI, George KARLIN-NEUMANN
  • Patent number: 11229911
    Abstract: Various aspects of the present invention relate to the control and manipulation of fluidic species, for example, in microfluidic systems. In one set of embodiments, droplets may be sorted using surface acoustic waves. The droplets may contain cells or other species. In some cases, the surface acoustic waves may be created using a surface acoustic wave generator such as an interdigitated transducer, and/or a material such as a piezoelectric substrate. The piezoelectric substrate may be isolated from the microfluidic substrate except at or proximate the location where the droplets are sorted, e.g., into first or second microfluidic channels. At such locations, the microfluidic substrate may be coupled to the piezoelectric substrate (or other material) by one or more coupling regions. In some cases, relatively high sorting rates may be achieved, e.g., at rates of at least about 1,000 Hz, at least about 10,000 Hz, or at least about 100,000 Hz, and in some embodiments, with high cell viability after sorting.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: January 25, 2022
    Assignees: President and Fellows of Harvard College, Universität Augsburg
    Inventors: David A. Weitz, Thomas Franke, Achim Wixforth, Lothar Schmid, Jeremy Agresti, Adam R. Abate
  • Patent number: 11224876
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: January 18, 2022
    Assignees: Brandeis University, President and Fellows of Harvard College
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Patent number: 11186862
    Abstract: Improved multiple displacement amplification (MDA) reagents and methods are provided.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: November 30, 2021
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Ronald Lebofsky, Jeremy Agresti, George Karlin-Neumann
  • Publication number: 20210348203
    Abstract: The present invention generally relates to droplets and/or emulsions, such as multiple emulsions. In some cases, the droplets and/or emulsions may be used in assays, and in certain embodiments, the droplet or emulsion may be hardened to form a gel. In some aspects, a heterogeneous assay can be performed using a gel. For example, a droplet may be hardened to form a gel, where the droplet contains a cell, DNA, or other suitable species. The gel may be exposed to a reactant, and the reactant may interact with the gel and/or with the cell, DNA, etc., in some fashion. For example, the reactant may diffuse through the gel, or the hardened particle may liquefy to form a liquid state, allowing the reactant to interact with the cell. As a specific example, DNA contained within a gel particle may be subjected to PCR (polymerase chain reaction) amplification, e.g., by using PCR primers able to bind to the gel as it forms. As the DNA is amplified using PCR, some of the DNA will be bound to the gel via the PCR primer.
    Type: Application
    Filed: January 14, 2021
    Publication date: November 11, 2021
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, Jeremy Agresti, Liang-Yin Chu, Jin-Woong Kim, Amy Rowat, Morten Sommer, Gautam Dantas, George M. Church
  • Publication number: 20210317509
    Abstract: Methods and compositions for maintaining DNA contiguity for sequencing is provided.
    Type: Application
    Filed: April 21, 2021
    Publication date: October 14, 2021
    Inventors: Ronald LEBOFSKY, Jeremy AGRESTI