Patents by Inventor Jeremy Agresti

Jeremy Agresti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210214786
    Abstract: Provided herein are compositions and methods for generating phase-shift barcode oligonucleotides for library construction for next-generation sequencing. In some cases, barcode oligonucleotides are attached to particles or beads. Also provided are methods and kits for using the phase-shift barcode oligonucleotides in sequencing assays.
    Type: Application
    Filed: March 29, 2021
    Publication date: July 15, 2021
    Inventors: Lucas FRENZ, Jeremy AGRESTI
  • Publication number: 20210178395
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Application
    Filed: February 24, 2021
    Publication date: June 17, 2021
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Patent number: 11021738
    Abstract: A method of maintaining contiguity in chromosomal DNA following treatment with a tagmentase. Conditions are selected such that the tagmentase does not release from the DNA, and thus forms a bridge linking DNA segments that have the same relationship (haplotype) as occurred in the genomic DNA. Thus the tagmentase step can occur in bulk (before partitions are formed). The resulting tagmentase-bridged DNA segments can be added to partitions maintaining the bridged segments until they are introduced into different partitions. Once in partitions, the contiguous DNA segments can be barcoded with a partition-specific barcode, thereby allowing for later identification of contiguous DNA after sequencing in bulk (after partitions contents are merged).
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: June 1, 2021
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Ronald Lebofsky, Jeremy Agresti
  • Patent number: 10988808
    Abstract: Provided herein are compositions and methods for generating phase-shift barcode oligonucleotides for library construction for next-generation sequencing. In some cases, barcode oligonucleotides are attached to particles or beads. Also provided are methods and kits for using the phase-shift barcode oligonucleotides in sequencing assays.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: April 27, 2021
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Lucas Frenz, Jeremy Agresti
  • Patent number: 10960397
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: March 30, 2021
    Assignees: President and Fellows of Harvard College, Brandeis University
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Publication number: 20210086183
    Abstract: The present invention relates to systems and methods for the arrangement of droplets in pre-determined locations. Many applications require the collection of time-resolved data. Examples include the screening of cells based on their growth characteristics or the observation of enzymatic reactions. The present invention provides a tool and related techniques which addresses this need, and which can be used in many other situations. The invention provides, in one aspect, a tool that allows for stable storage and indexing of individual droplets. The invention can interface not only with microfluidic/microscale equipment, but with macroscopic equipment to allow for the easy injection of liquids and extraction of sample droplets, etc.
    Type: Application
    Filed: October 1, 2020
    Publication date: March 25, 2021
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, Christian Boehm, Amy Rowat, Sarah Koester, Jeremy Agresti
  • Publication number: 20210071173
    Abstract: Methods and compositions are provided herein for preparing high-throughput cDNA sequencing libraries.
    Type: Application
    Filed: November 23, 2020
    Publication date: March 11, 2021
    Inventors: Ronald LEBOFSKY, Jeremy AGRESTI
  • Patent number: 10941430
    Abstract: The present invention generally relates to droplets and/or emulsions, such as multiple emulsions. In some cases, the droplets and/or emulsions may be used in assays, and in certain embodiments, the droplet or emulsion may be hardened to form a gel. In some aspects, a heterogeneous assay can be performed using a gel. For example, a droplet may be hardened to form a gel, where the droplet contains a cell, DNA, or other suitable species. The gel may be exposed to a reactant, and the reactant may interact with the gel and/or with the cell, DNA, etc., in some fashion. For example, the reactant may diffuse through the gel, or the hardened particle may liquefy to form a liquid state, allowing the reactant to interact with the cell. As a specific example, DNA contained within a gel particle may be subjected to PCR (polymerase chain reaction) amplification, e.g., by using PCR primers able to bind to the gel as it forms. As the DNA is amplified using PCR, some of the DNA will be bound to the gel via the PCR primer.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: March 9, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Jeremy Agresti, Liang-Yin Chu, Jin-Woong Kim, Amy Rowat, Morten Sommer, Gautam Dantas, George M. Church
  • Patent number: 10942109
    Abstract: The present disclosure relates to compositions comprising a hydrogel particle with optical properties substantially similar to the optical properties of a target cell, and methods for their use.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: March 9, 2021
    Assignee: Slingshot Biosciences, Inc.
    Inventors: Jeffrey Kim, Oliver Liu, Jeremy Agresti, Anh Tuan Nguyen
  • Patent number: 10876112
    Abstract: Methods and compositions are provided herein for preparing high-throughput cDNA sequencing libraries.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: December 29, 2020
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Ronald Lebofsky, Jeremy Agresti
  • Publication number: 20200400546
    Abstract: Hydrogel particles and their use in cytometric applications are described. The hydrogel particles described herein are selectively tunable to have at least one optical property substantially similar to at least one optical property of a target cell. In this regard, the hydrogel particles provided herein, in one aspect, are used as a calibration reagent for the detection of a target cell in a sample.
    Type: Application
    Filed: July 20, 2020
    Publication date: December 24, 2020
    Applicant: Slingshot Biosciences, Inc.
    Inventors: Jeffrey KIM, Oliver LIU, Jeremy AGRESTI, Anh Tuan NGUYEN
  • Patent number: 10828641
    Abstract: The present invention relates to systems and methods for the arrangement of droplets in pre-determined locations. Many applications require the collection of time-resolved data. Examples include the screening of cells based on their growth characteristics or the observation of enzymatic reactions. The present invention provides a tool and related techniques which addresses this need, and which can be used in many other situations. The invention provides, in one aspect, a tool that allows for stable storage and indexing of individual droplets. The invention can interface not only with microfluidic/microscale equipment, but with macroscopic equipment to allow for the easy injection of liquids and extraction of sample droplets, etc.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: November 10, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: Christian Boehm, Amy Rowat, Sarah Koester, Jeremy Agresti, David A. Weitz
  • Publication number: 20200339977
    Abstract: Methods and compositions are provided for making and using uniquely tagged target nucleic acid molecules.
    Type: Application
    Filed: July 13, 2020
    Publication date: October 29, 2020
    Inventors: Ronald LEBOFSKY, Jeremy AGRESTI
  • Publication number: 20200330993
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Patent number: 10753846
    Abstract: Hydrogel particles and their use in cytometric applications are described. The hydrogel particles described herein are selectively tunable to have at least one optical property substantially similar to the at least one optical property of a target cell. In this regard, the hydrogel particles provided herein in one aspect, are used as a calibration reagent for the detection of a target cell in a sample.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: August 25, 2020
    Assignee: Slingshot Biosciences, Inc.
    Inventors: Jeffrey Kim, Oliver Liu, Jeremy Agresti, Anh Tuan Nguyen
  • Patent number: 10752894
    Abstract: Methods and compositions are provided for making and using uniquely tagged target nucleic acid molecules.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: August 25, 2020
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Ronald Lebofsky, Jeremy Agresti
  • Patent number: 10738337
    Abstract: The present invention generally relates to droplets and/or emulsions, such as multiple emulsions. In some cases, the droplets and/or emulsions may be used in assays, and in certain embodiments, the droplet or emulsion may be hardened to form a gel. In some aspects, a heterogeneous assay can be performed using a gel. For example, a droplet may be hardened to form a gel, where the droplet contains a cell, DNA, or other suitable species. The gel may be exposed to a reactant, and the reactant may interact with the gel and/or with the cell, DNA, etc., in some fashion. For example, the reactant may diffuse through the gel, or the hardened particle may liquefy to form a liquid state, allowing the reactant to interact with the cell. As a specific example, DNA contained within a gel particle may be subjected to PCR (polymerase chain reaction) amplification, e.g., by using PCR primers able to bind to the gel as it forms. As the DNA is amplified using PCR, some of the DNA will be bound to the gel via the PCR primer.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: August 11, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Jeremy Agresti, Liang-Yin Chu, Jin-Woong Kim, Amy Rowat, Morten Sommer, Gautam Dantas, George M. Church
  • Publication number: 20200190579
    Abstract: Provided herein are compositions and methods for generating phase-shift barcode oligonucleotides for library construction for next-generation sequencing. In some cases, barcode oligonucleotides are attached to particles or beads. Also provided are methods and kits for using the phase-shift barcode oligonucleotides in sequencing assays.
    Type: Application
    Filed: February 26, 2020
    Publication date: June 18, 2020
    Inventors: Lucas FRENZ, Jeremy AGRESTI
  • Patent number: 10683524
    Abstract: The present invention generally relates to droplets and/or emulsions, such as multiple emulsions. In some cases, the droplets and/or emulsions may be used in assays, and in certain embodiments, the droplet or emulsion may be hardened to form a gel. In some aspects, a heterogeneous assay can be performed using a gel. For example, a droplet may be hardened to form a gel, where the droplet contains a cell, DNA, or other suitable species. The gel may be exposed to a reactant, and the reactant may interact with the gel and/or with the cell, DNA, etc., in some fashion. For example, the reactant may diffuse through the gel, or the hardened particle may liquefy to form a liquid state, allowing the reactant to interact with the cell. As a specific example, DNA contained within a gel particle may be subjected to PCR (polymerase chain reaction) amplification, e.g., by using PCR primers able to bind to the gel as it forms. As the DNA is amplified using PCR, some of the DNA will be bound to the gel via the PCR primer.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: June 16, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Jeremy Agresti, Liang-Yin Chu, Jin-Woong Kim, Amy Rowat, Morten Sommer, Gautam Dantas, George Church
  • Patent number: 10676736
    Abstract: Methods and compositions are provided herein for preparing high-throughput cDNA sequencing libraries.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: June 9, 2020
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Ronald Lebofsky, Jeremy Agresti