Patents by Inventor Jes Asmussen

Jes Asmussen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11854775
    Abstract: The disclosure relates to microwave cavity plasma reactor (MCPR) apparatus and associated optical measurement system that enable microwave plasma assisted chemical vapor deposition (MPACVD) of a component such as diamond while measuring the local surface properties of the component while being grown. Related methods include deposition of the component, measurement of the local surface properties, and/or alteration of operating conditions during deposition in response to the local surface properties. As described in more detail below, the MPCR apparatus includes one or more electrically conductive, optically transparent regions forming part of the external boundary of its microwave chamber, thus permitting external optical interrogation of internal reactor conditions during deposition while providing a desired electrical microwave chamber to maintain selected microwave excitation modes therein.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: December 26, 2023
    Assignee: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Timothy A. Grotjohn, Jes Asmussen
  • Patent number: 11702749
    Abstract: The disclosure relates to microwave cavity plasma reactor (MCPR) apparatus and associated tuning and process control methods that enable the microwave plasma assisted chemical vapor deposition (MPACVD) of a component such as diamond. Related methods enable the control of the microwave discharge position, size and shape, and enable efficient matching of the incident microwave power into the reactor prior to and during component deposition. Pre-deposition tuning processes provide a well matched reactor exhibiting a high plasma reactor coupling efficiency over a wide range of operating conditions, thus allowing operational input parameters to be modified during deposition while simultaneously maintaining the reactor in a well-matched state.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: July 18, 2023
    Assignee: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Jes Asmussen, Jing Lu, Yajun Gu, Shreya Nad
  • Patent number: 11579597
    Abstract: Embodiments of this present disclosure may include a system that includes a first network device. The first network device may perform an operation according to a device configuration file. The system may also include a second network device that directly communicatively couples to the first network device through a peer-to-peer (P-P) communication network. The second network device may include a backup file of the device configuration file. The second network device may transmit the backup file of the device configuration file to the first network device in response to detecting that the first network device is lacking the device configuration file.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: February 14, 2023
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Dayin Xu, John P. Caspers, William H. Martin, Jeffrey S. Martin, Jes Asmussen
  • Publication number: 20210294305
    Abstract: Embodiments of this present disclosure may include a system that includes a first network device. The first network device may perform an operation according to a device configuration file. The system may also include a second network device that directly communicatively couples to the first network device through a peer-to-peer (P-P) communication network. The second network device may include a backup file of the device configuration file. The second network device may transmit the backup file of the device configuration file to the first network device in response to detecting that the first network device is lacking the device configuration file.
    Type: Application
    Filed: June 4, 2021
    Publication date: September 23, 2021
    Inventors: Dayin Xu, John P. Caspers, William H. Martin, Jeffrey S. Martin, Jes Asmussen
  • Patent number: 11036209
    Abstract: Embodiments of this present disclosure may include a system that includes a first network device. The first network device may perform an operation according to a device configuration file. The system may also include a second network device that directly communicatively couples to the first network device through a peer-to-peer (P-P) communication network. The second network device may include a backup file of the device configuration file. The second network device may transmit the backup file of the device configuration file to the first network device in response to detecting that the first network device is lacking the device configuration file.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: June 15, 2021
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Dayin Xu, John P. Caspers, William H. Martin, Jeffrey S. Martin, Jes Asmussen
  • Publication number: 20210089008
    Abstract: Embodiments of this present disclosure may include a system that includes a first network device. The first network device may perform an operation according to a device configuration file. The system may also include a second network device that directly communicatively couples to the first network device through a peer-to-peer (P-P) communication network. The second network device may include a backup file of the device configuration file. The second network device may transmit the backup file of the device configuration file to the first network device in response to detecting that the first network device is lacking the device configuration file.
    Type: Application
    Filed: September 24, 2019
    Publication date: March 25, 2021
    Inventors: Dayin Xu, John P. Caspers, William H. Martin, Jeffrey S. Martin, Jes Asmussen
  • Publication number: 20200216960
    Abstract: The disclosure relates to microwave cavity plasma reactor (MCPR) apparatus and associated tuning and process control methods that enable the microwave plasma assisted chemical vapor deposition (MPACVD) of a component such as diamond. Related methods enable the control of the microwave discharge position, size and shape, and enable efficient matching of the incident microwave power into the reactor prior to and during component deposition. Pre-deposition tuning processes provide a well matched reactor exhibiting a high plasma reactor coupling efficiency over a wide range of operating conditions, thus allowing operational input parameters to be modified during deposition while simultaneously maintaining the reactor in a well-matched state.
    Type: Application
    Filed: December 2, 2019
    Publication date: July 9, 2020
    Inventors: Jes Asmussen, Jing Lu, Yajun Gu, Shreya Nad
  • Publication number: 20200152433
    Abstract: The disclosure relates to microwave cavity plasma reactor (MCPR) apparatus and associated optical measurement system that enable microwave plasma assisted chemical vapor deposition (MPACVD) of a component such as diamond while measuring the local surface properties of the component while being grown. Related methods include deposition of the component, measurement of the local surface properties, and/or alteration of operating conditions during deposition in response to the local surface properties. As described in more detail below, the MPCR apparatus includes one or more electrically conductive, optically transparent regions forming part of the external boundary of its microwave chamber, thus permitting external optical interrogation of internal reactor conditions during deposition while providing a desired electrical microwave chamber to maintain selected microwave excitation modes therein.
    Type: Application
    Filed: January 16, 2020
    Publication date: May 14, 2020
    Inventors: Timothy A. Grotjohn, Jes Asmussen
  • Patent number: 10541118
    Abstract: The disclosure relates to microwave cavity plasma reactor (MCPR) apparatus and associated optical measurement system that enable microwave plasma assisted chemical vapor deposition (MPACVD) of a component such as diamond while measuring the local surface properties of the component while being grown. Related methods include deposition of the component, measurement of the local surface properties, and/or alteration of operating conditions during deposition in response to the local surface properties. As described in more detail below, the MCPR apparatus includes one or more electrically conductive, optically transparent regions forming part of the external boundary of its microwave chamber, thus permitting external optical interrogation of internal reactor conditions during deposition while providing a desired electrical microwave chamber to maintain selected microwave excitation modes therein.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: January 21, 2020
    Assignee: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Timothy A. Grotjohn, Jes Asmussen
  • Patent number: 10494719
    Abstract: The disclosure relates to microwave cavity plasma reactor (MCPR) apparatus and associated tuning and process control methods that enable the microwave plasma assisted chemical vapor deposition (MPACVD) of a component such as diamond. Related methods enable the control of the microwave discharge position, size and shape, and enable efficient matching of the incident microwave power into the reactor prior to and during component deposition. Pre-deposition tuning processes provide a well matched reactor exhibiting a high plasma reactor coupling efficiency over a wide range of operating conditions, thus allowing operational input parameters to be modified during deposition while simultaneously maintaining the reactor in a well-matched state.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: December 3, 2019
    Assignee: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Jes Asmussen, Jing Lu, Yajun Gu, Shreya Nad
  • Patent number: 9890457
    Abstract: Microwave plasma assisted reactors, for example chemical vapor deposition (MPCVD) reactors, are disclosed. The disclosed reactors operate at high pressures (>180-320 Torr) and high power densities (>150 W/cm3), and thereby enable high deposition rate CVD processes that rapidly deposit materials. In particular, reactor design examples are described that, when operating in the 180-320 Torr pressure regime, rapidly CVD synthesize high quality polycrystalline (PCD) and single crystal diamond (SCD). The improved reactors include a radial contraction in the vicinity of the plasma chamber (and optionally a combined expansion in the vicinity of the electromagnetic wave source, followed by the contraction) in the main microwave chamber as electromagnetic energy propagates from an electromagnetic wave source to a plasma/deposition chamber.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: February 13, 2018
    Assignee: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Jes Asmussen, Yajun Gu, Timothy A. Grotjohn
  • Publication number: 20170271132
    Abstract: The disclosure relates to microwave cavity plasma reactor (MCPR) apparatus and associated optical measurement system that enable microwave plasma assisted chemical vapor deposition (MPACVD) of a component such as diamond while measuring the local surface properties of the component while being grown. Related methods include deposition of the component, measurement of the local surface properties, and/or alteration of operating conditions during deposition in response to the local surface properties. As described in more detail below, the MPCR apparatus includes one or more electrically conductive, optically transparent regions forming part of the external boundary of its microwave chamber, thus permitting external optical interrogation of internal reactor conditions during deposition while providing a desired electrical microwave chamber to maintain selected microwave excitation modes therein.
    Type: Application
    Filed: March 20, 2017
    Publication date: September 21, 2017
    Inventors: Timothy A. Grotjohn, Jes Asmussen
  • Patent number: 9732440
    Abstract: The present invention relates to a microwave plasma deposition process and apparatus for producing diamond, preferably as single crystal diamond (SCD). The process and apparatus enables the production of multiple layers of the diamond by the use of an extending device to increase the length and the volume of a recess in a holder containing a SCD substrate as layers of diamond are deposited. The diamond is used for abrasives, cutting tools, gems, electronic substrates, heat sinks, electrochemical electrodes, windows for high power radiation and electron beams, and detectors.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: August 15, 2017
    Assignees: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY, Fraunhofer USA
    Inventors: Jes Asmussen, Timothy A. Grotjohn, Donnie K. Reinhard, Rahul Ramamurti, M. Kagan Yaran, Thomas Schuelke, Michael Becker, David King
  • Publication number: 20170183778
    Abstract: The disclosure relates to microwave cavity plasma reactor (MCPR) apparatus and associated tuning and process control methods that enable the microwave plasma assisted chemical vapor deposition (MPACVD) of a component such as diamond. Related methods enable the control of the microwave discharge position, size and shape, and enable efficient matching of the incident microwave power into the reactor prior to and during component deposition. Pre-deposition tuning processes provide a well matched reactor exhibiting a high plasma reactor coupling efficiency over a wide range of operating conditions, thus allowing operational input parameters to be modified during deposition while simultaneously maintaining the reactor in a well-matched state.
    Type: Application
    Filed: May 22, 2015
    Publication date: June 29, 2017
    Inventors: Jes Asmussen, Jing Lu, Yajun Gu, Shreya Nad
  • Publication number: 20170114476
    Abstract: The present invention relates to a microwave plasma deposition process and apparatus for producing diamond, preferably as single crystal diamond (SCD). The process and apparatus enables the production of multiple layers of the diamond by the use of an extending device to increase the length and the volume of a recess in a holder containing a SCD substrate as layers of diamond are deposited. The diamond is used for abrasives, cutting tools, gems, electronic substrates, heat sinks, electrochemical electrodes, windows for high power radiation and electron beams, and detectors.
    Type: Application
    Filed: November 1, 2016
    Publication date: April 27, 2017
    Inventors: Jes Asmussen, Timothy A. Grotjohn, Donnie K. Reinhard, Rahul Ramamurti, M. Kagan Yaran, Thomas Schuelke, Michael Becker, David King
  • Patent number: 9487858
    Abstract: The present invention relates to a microwave plasma deposition process and apparatus for producing diamond, preferably as single crystal diamond (SCD). The process and apparatus enables the production of multiple layers of the diamond by the use of an extending device to increase the length and the volume of a recess in a holder containing a SCD substrate as layers of diamond are deposited. The diamond is used for abrasives, cutting tools, gems, electronic substrates, heat sinks, electrochemical electrodes, windows for high power radiation and electron beams, and detectors.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: November 8, 2016
    Assignees: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY, Fraunhofer USA
    Inventors: Jes Asmussen, Timothy Grotjohn, Donnie Reinhard, Rahul Ramamurti, M. Kagan Yaran, Thomas Schuelke, Michael Becker, David King
  • Patent number: 9166002
    Abstract: The disclosure relates to the formation of n-doped single crystal diamond (SCD). In general, a SCD substrate is preferentially anisotropically etched to provide one or more recesses in the SCD substrate, where the recesses are defined by (1 1 1) surface sidewalls resulting from the preferential anisotropic etching process. The recesses generally have a pyramidal shape. N-type doped SCD (e.g., using a phosphorous dopant) is then deposited into the preferentially anisotropically etched recesses. When the SCD substrate is a p-type diamond (e.g., using a boron dopant), the resulting structure can be used as a p-n junction, for example for use in various power electronic apparatus such as diodes, etc.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: October 20, 2015
    Assignee: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Timothy A. Grotjohn, Jes Asmussen, Timothy Hogan
  • Patent number: 9139909
    Abstract: New and improved microwave plasma assisted reactors, for example chemical vapor deposition (MPCVD) reactors, are disclosed. The disclosed microwave plasma assisted reactors operate at pressures ranging from about 10 Torr to about 760 Torr. The disclosed microwave plasma assisted reactors include a movable lower sliding short and/or a reduced diameter conductive stage in a coaxial cavity of a plasma chamber. For a particular application, the lower sliding short position and/or the conductive stage diameter can be variably selected such that, relative to conventional reactors, the reactors can be tuned to operate over larger substrate areas, operate at higher pressures, and discharge absorbed power densities with increased diamond synthesis rates (carats per hour) and increased deposition uniformity.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: September 22, 2015
    Assignees: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY, Fraunhofer USA
    Inventors: Jes Asmussen, Timothy Grotjohn, Donnie K. Reinhard, Thomas Schuelke, M. Kagan Yaran, Kadek W. Hemawan, Michael Becker, David King, Yajun Gu, Jing Lu
  • Publication number: 20140220261
    Abstract: Microwave plasma assisted reactors, for example chemical vapor deposition (MPCVD) reactors, are disclosed. The disclosed reactors operate at high pressures (>180-320 Torr) and high power densities (>150 W/cm3), and thereby enable high deposition rate CVD processes that rapidly deposit materials. In particular, reactor design examples are described that, when operating in the 180-320 Torr pressure regime, rapidly CVD synthesize high quality polycrystalline (PCD) and single crystal diamond (SCD). The improved reactors include a radial contraction in the vicinity of the plasma chamber (and optionally a combined expansion in the vicinity of the electromagnetic wave source, followed by the contraction) in the main microwave chamber as electromagnetic energy propagates from an electromagnetic wave source to a plasma/deposition chamber.
    Type: Application
    Filed: May 11, 2012
    Publication date: August 7, 2014
    Applicant: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Jes Asmussen, Yajun Gu, Timothy A. Grotjohn
  • Patent number: 8668962
    Abstract: New and improved microwave plasma assisted reactors, for example chemical vapor deposition (MPCVD) reactors, are disclosed. The disclosed microwave plasma assisted reactors operate at pressures ranging from about 10 Torr to about 760 Torr. The disclosed microwave plasma assisted reactors include a movable lower sliding short and/or a reduced diameter conductive stage in a coaxial cavity of a plasma chamber. For a particular application, the lower sliding short position and/or the conductive stage diameter can be variably selected such that, relative to conventional reactors, the reactors can be tuned to operate over larger substrate areas, operate at higher pressures, and discharge absorbed power densities with increased diamond synthesis rates (carats per hour) and increased deposition uniformity.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: March 11, 2014
    Assignees: Board of Trustees of Michigan State University, Fraunhofer USA
    Inventors: Jes Asmussen, Timothy Grotjohn, Donnie K. Reinhard, Thomas Schuelke, M. Kagan Yaran, Kadek W. Hemawan, Michael Becker, David King, Yajun Gu, Jing Lu