Patents by Inventor Jesse Sol Levinson

Jesse Sol Levinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10468062
    Abstract: A method includes receiving a first signal from a first sensor, the first signal including data representing an environment. The method also includes receiving a second signal from a second sensor, the second signal including data representing the environment. The method further includes determining a group of objects based at least in part on the received data, and identifying an error associated with data included in the first signal and/or the second signal.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: November 5, 2019
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Nitesh Shroff
  • Patent number: 10444759
    Abstract: Systems, methods, and apparatuses described herein are directed to performing segmentation on voxels representing three-dimensional data to identify static and dynamic objects. LIDAR data may be captured by a perception system for an autonomous vehicle and represented in a voxel space. Operations may include determining a drivable surface by parsing individual voxels to determine an orientation of a surface normal of a planar approximation of the voxelized data relative to a reference direction. Clustering techniques can be used to grow a ground plane including a plurality of locally flat voxels. Ground plane data can be set aside from the voxel space, and the remaining voxels can be clustered to determine objects. Voxel data can be analyzed over time to determine dynamic objects. Segmentation information associated with ground voxels, static object, and dynamic objects can be provided to a tracker and/or planner in conjunction with operating the autonomous vehicle.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: October 15, 2019
    Assignee: Zoox, Inc.
    Inventors: Bertrand Robert Douillard, Subhasis Das, Zeng Wang, Dragomir Dimitrov Anguelov, Jesse Sol Levinson
  • Publication number: 20190295315
    Abstract: Techniques for generating maps without shadows are discussed herein. A plurality of images can be captured by a vehicle traversing an environment representing various perspectives and/or lighting conditions in the environment. A shadow within an image can be identified by a machine learning algorithm trained to detect shadows in images and/or by projecting the image onto a three-dimensional (3D) map of the environment and identifying candidate shadow regions based on the geometry of the 3D map and the location of the light source. Shadows can be removed or minimized by utilizing blending or duplicating techniques. Color information and reflectance information can be added to the 3D map to generate a textured 3D map. A textured 3D map without shadows can be used to simulate the environment under different lighting conditions.
    Type: Application
    Filed: March 21, 2018
    Publication date: September 26, 2019
    Inventors: Jesse Sol Levinson, Ashutosh Gajanan Rege, Brice Rebsamen, Elena Stumm, Nitesh Shroff, Derek Adams
  • Publication number: 20190295318
    Abstract: Techniques for generating maps without shadows are discussed herein. A plurality of images can be captured by a vehicle traversing an environment representing various perspectives and/or lighting conditions in the environment. A shadow within an image can be identified by a machine learning algorithm trained to detect shadows in images and/or by projecting the image onto a three-dimensional (3D) map of the environment and identifying candidate shadow regions based on the geometry of the 3D map and the location of the light source. Shadows can be removed or minimized by utilizing blending or duplicating techniques. Color information and reflectance information can be added to the 3D map to generate a textured 3D map. A textured 3D map without shadows can be used to simulate the environment under different lighting conditions.
    Type: Application
    Filed: March 21, 2018
    Publication date: September 26, 2019
    Inventors: Jesse Sol Levinson, Ashutosh Gajanan Rege, Brice Rebsamen, Elena Stumm, Nitesh Shroff, Derek Adams
  • Publication number: 20190278292
    Abstract: Techniques for decimating portions of a map of an environment are discussed herein. The environment can be represented by a three-dimensional (3D) map including a plurality of polygons and semantic information associated with the polygons. In some cases, decimation operations may be based on semantic information associated with the environment. Differing decimation operations and/or levels may be applied to polygons of different semantic classifications or differing contribution levels. Boundaries between regions having different semantic information can be preserved. Meshes can be decimated using different decimation operators or decimation levels and an accuracy of localizing can be compared using the various decimated meshes. An optimal mesh can be selected and sent to vehicles for localizing the vehicles in the environment.
    Type: Application
    Filed: March 6, 2018
    Publication date: September 12, 2019
    Inventors: Jesse Sol Levinson, Ashutosh Gajanan Rege, Brice Rebsamen, Elena Stumm, Nitesh Shroff, Derek Adams
  • Publication number: 20190278293
    Abstract: Techniques for decimating portions of a map of an environment are discussed herein. The environment can be represented by a three-dimensional (3D) map including a plurality of polygons and semantic information associated with the polygons. In some cases, decimation operations may be based on semantic information associated with the environment. Differing decimation operations and/or levels may be applied to polygons of different semantic classifications or differing contribution levels. Boundaries between regions having different semantic information can be preserved. Meshes can be decimated using different decimation operators or decimation levels and an accuracy of localizing can be compared using the various decimated meshes. An optimal mesh can be selected and sent to vehicles for localizing the vehicles in the environment.
    Type: Application
    Filed: March 6, 2018
    Publication date: September 12, 2019
    Inventors: Jesse Sol Levinson, Ashutosh Gajanan Rege, Brice Rebsamen, Elena Stumm, Nitesh Shroff, Derek Adams
  • Patent number: 10401852
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. More specifically, systems, devices, and methods are configured to initiate modification of trajectories to influence navigation of autonomous vehicles. In particular, a method may include receiving a teleoperation message via a communication link from an autonomous vehicle, detecting data from the teleoperation message specifying an event associated with the autonomous vehicle, identifying one or more courses of action to perform responsive to detecting the data specifying the event, and generating visualization data to present information associated with the event to a display of a teleoperator computing device.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: September 3, 2019
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Ashutosh Gajanan Rege, Rachad Youssef Gamara, Gabriel Thurston Sibley, Timothy David Kentley-Klay, Gary Linscott
  • Publication number: 20190258737
    Abstract: A system may receive a sensor dataset representing an environment and use the dataset to create or update a map. In creating or updating the map, the system may determine an object classification of one or more detected objects and only selectively incorporate data into the map based at least in part on the classification. The map may be associated with the classification (or semantic) information of the objects, as well as weights based on the classification. Similarly, datasets with selected classes of data removed may be used for system localization. Further, the system may determine an object track of the objects. When updating the map, voxels in a voxel space may indicate an occupied voxel based on a threshold number of observances. The object track and clean map can then be used for controlling an autonomous vehicle.
    Type: Application
    Filed: February 20, 2018
    Publication date: August 22, 2019
    Inventors: Zeng Wang, Nitesh Shroff, Dragomir Dimitrov Anguelov, Subhasis Das, Jesse Sol Levinson, Brice Rebsamen
  • Patent number: 10386836
    Abstract: A method for operating a driverless vehicle may include receiving, at the driverless vehicle, sensor signals related to operation of the driverless vehicle, and road network data from a road network data store. The method may also include determining a driving corridor within which the driverless vehicle travels according to a trajectory, and causing the driverless vehicle to traverse a road network autonomously according to a path from a first geographic location to a second geographic location. The method may also include determining that an event associated with the path has occurred, and sending communication signals to a teleoperations system including a request for guidance and one or more of sensor data and the road network data. The method may include receiving, at the driverless vehicle, teleoperations signals from the teleoperations system, such that the vehicle controller determines a revised trajectory based at least in part on the teleoperations signals.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: August 20, 2019
    Assignee: Zoox, Inc.
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Timothy Caldwell, Marin Kobilarov, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Publication number: 20190196464
    Abstract: A teleoperator device may be configured to obtain a request for teleoperator assistance from a driverless vehicle and obtain teleoperator data in response to the request. The teleoperator device may also be configured to record at least some of the teleoperator input and/or guidance transmitted to the driverless vehicle based on the teleoperator input. Upon receiving a subsequent request, the teleoperator device may be configured to reproduce at least part of the former teleoperator input and/or to provide an option to activate guidance associated with the teleoperator input. The teleoperator device may also be configured to train a model and/or use a model to determine from vehicle data an option for presentation via a teleoperator interface and/or a presentation configuration of the teleoperator interface.
    Type: Application
    Filed: February 27, 2019
    Publication date: June 27, 2019
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Patent number: 10268191
    Abstract: A teleoperator device may be configured to obtain a request for teleoperator assistance from a driverless vehicle and obtain teleoperator data in response to the request. The teleoperator device may also be configured to record at least some of the teleoperator input and/or guidance transmitted to the driverless vehicle based on the teleoperator input. Upon receiving a subsequent request, the teleoperator device may be configured to reproduce at least part of the former teleoperator input and/or to provide an option to activate guidance associated with the teleoperator input. The teleoperator device may also be configured to train a model and/or use a model to determine from vehicle data an option for presentation via a teleoperator interface and/or a presentation configuration of the teleoperator interface.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: April 23, 2019
    Assignee: Zoox, Inc.
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Publication number: 20190049566
    Abstract: Perception sensors of a vehicle can be used for various operating functions of the vehicle. A computing device may receive sensor data from the perception sensors, and may calibrate the perception sensors using the sensor data, to enable effective operation of the vehicle. To calibrate the sensors, the computing device may project the sensor data into a voxel space, and determine a voxel score comprising an occupancy score and a residual value for each voxel. The computing device may then adjust an estimated position and/or orientation of the sensors, and associated sensor data, from at least one perception sensor to minimize the voxel score. The computing device may calibrate the sensor using the adjustments corresponding to the minimized voxel score. Additionally, the computing device may be configured to calculate an error in a position associated with the vehicle by calibrating data corresponding to a same point captured at different times.
    Type: Application
    Filed: August 11, 2017
    Publication date: February 14, 2019
    Inventors: Derek Adams, Ian Baldwin, Bertrand Robert Douillard, Jesse Sol Levinson
  • Publication number: 20190049242
    Abstract: Perception sensors of a vehicle can be used for various operating functions of the vehicle. A computing device may receive sensor data from the perception sensors, and may calibrate the perception sensors using the sensor data, to enable effective operation of the vehicle. To calibrate the sensors, the computing device may project the sensor data into a voxel space, and determine a voxel score comprising an occupancy score and a residual value for each voxel. The computing device may then adjust an estimated position and/or orientation of the sensors, and associated sensor data, from at least one perception sensor to minimize the voxel score. The computing device may calibrate the sensor using the adjustments corresponding to the minimized voxel score. Additionally, the computing device may be configured to calculate an error in a position associated with the vehicle by calibrating data corresponding to a same point captured at different times.
    Type: Application
    Filed: August 11, 2017
    Publication date: February 14, 2019
    Inventors: Derek Adams, Ian Baldwin, Bertrand Robert Douillard, Jesse Sol Levinson
  • Publication number: 20190011912
    Abstract: A method for operating a driverless vehicle may include receiving, at the driverless vehicle, sensor signals related to operation of the driverless vehicle, and road network data from a road network data store. The method may also include determining a driving corridor within which the driverless vehicle travels according to a trajectory, and causing the driverless vehicle to traverse a road network autonomously according to a path from a first geographic location to a second geographic location. The method may also include determining that an event associated with the path has occurred, and sending communication signals to a teleoperations system including a request for guidance and one or more of sensor data and the road network data. The method may include receiving, at the driverless vehicle, teleoperations signals from the teleoperations system, such that the vehicle controller determines a revised trajectory based at least in part on the teleoperations signals.
    Type: Application
    Filed: July 7, 2017
    Publication date: January 10, 2019
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Timothy Caldwell, Marin Kobilarov, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Publication number: 20190011910
    Abstract: A method for autonomously operating a driverless vehicle along a path between a first geographic location and a destination may include receiving communication signals from the driverless vehicle. The communication signals may include sensor data from the driverless vehicle and data indicating occurrence of an event associated with the path. The communication signals may also include data indicating that a confidence level associated with the path is less than a threshold confidence level due to the event. The method may also include determining, via a teleoperations system, a level of guidance to provide the driverless vehicle based on data associated with the communication signals, and transmitting teleoperations signals to the driverless vehicle. The teleoperations signals may include guidance to operate the driverless vehicle according to the determined level of guidance, so that a vehicle controller maneuvers the driverless vehicle to avoid, travel around, or pass through the event.
    Type: Application
    Filed: July 7, 2017
    Publication date: January 10, 2019
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Timothy Caldwell, Marin Kobilarov, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Publication number: 20180364717
    Abstract: Systems, methods, and apparatuses described herein are directed to performing segmentation on voxels representing three-dimensional data to identify static and dynamic objects. LIDAR data may be captured by a perception system for an autonomous vehicle and represented in a voxel space. Operations may include determining a drivable surface by parsing individual voxels to determine an orientation of a surface normal of a planar approximation of the voxelized data relative to a reference direction. Clustering techniques can be used to grow a ground plane including a plurality of locally flat voxels. Ground plane data can be set aside from the voxel space, and the remaining voxels can be clustered to determine objects. Voxel data can be analyzed over time to determine dynamic objects. Segmentation information associated with ground voxels, static object, and dynamic objects can be provided to a tracker and/or planner in conjunction with operating the autonomous vehicle.
    Type: Application
    Filed: June 14, 2017
    Publication date: December 20, 2018
    Inventors: Bertrand Robert Douillard, Subhasis Das, Zeng Wang, Dragomir Dimitrov Anguelov, Jesse Sol Levinson
  • Publication number: 20180329411
    Abstract: A system, an apparatus or a process may be configured to implement an application that applies artificial intelligence and/or machine-learning techniques to predict an optimal course of action (or a subset of courses of action) for an autonomous vehicle system (e.g., one or more of a planner of an autonomous vehicle, a simulator, or a teleoperator) to undertake based on suboptimal autonomous vehicle performance and/or changes in detected sensor data (e.g., new buildings, landmarks, potholes, etc.). The application may determine a subset of trajectories based on a number of decisions and interactions when resolving an anomaly due to an event or condition. The application may use aggregated sensor data from multiple autonomous vehicles to assist in identifying events or conditions that might affect travel (e.g., using semantic scene classification). An optimal subset of trajectories may be formed based on recommendations responsive to semantic changes (e.g., road construction).
    Type: Application
    Filed: May 14, 2018
    Publication date: November 15, 2018
    Inventors: Jesse Sol Levinson, Gabriel Thurston Sibley, Ashutosh Gajanan Rege
  • Patent number: 10048683
    Abstract: A system, an apparatus or a process may be configured to implement an application that applies artificial intelligence and/or machine-learning techniques to predict an optimal course of action (or a subset of courses of action) for an autonomous vehicle system (e.g., one or more of a planner of an autonomous vehicle, a simulator, or a teleoperator) to undertake based on suboptimal autonomous vehicle performance and/or changes in detected sensor data (e.g., new buildings, landmarks, potholes, etc.). The application may determine a subset of trajectories based on a number of decisions and interactions when resolving an anomaly due to an event or condition. The application may use aggregated sensor data from multiple autonomous vehicles to assist in identifying events or conditions that might affect travel (e.g., using semantic scene classification). An optimal subset of trajectories may be formed based on recommendations responsive to semantic changes (e.g., road construction).
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: August 14, 2018
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Gabriel Thurston Sibley, Ashutosh Gajanan Rege
  • Publication number: 20180196439
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. More specifically, systems, devices, and methods are configured to generate trajectories to influence navigation of autonomous vehicles. In particular, a method may include receiving path data to navigate from a first geographic location to a second geographic location, generating data representing a trajectory with which to control motion of the autonomous vehicle based on the path data, generating data representing a contingent trajectory, monitoring generation of the trajectory, and implementing the contingent trajectory subsequent to an absence of the trajectory.
    Type: Application
    Filed: January 22, 2018
    Publication date: July 12, 2018
    Inventors: Jesse Sol Levinson, Gabriel Thurston Sibley, Timothy David Kentley-Klay
  • Publication number: 20180190046
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. In particular, a method may include receiving data associated with a sensor measurement of a perceived object, determining a label associated with the perceived object based on an initial calibration, retrieving log file data associated with the label, determining a calibration parameter associated with the sensor measurement based on the retrieved log file data, and storing the calibration parameter in association with a sensor associated with the sensor measurement. Sensors may be calibrated on the fly while the autonomous vehicle is in operation using one or more other sensors and/or fused data from multiple types of sensors.
    Type: Application
    Filed: January 23, 2018
    Publication date: July 5, 2018
    Inventors: Jesse Sol Levinson, Gabriel Thurston Sibley, Bertrand Robert Douillard