Patents by Inventor Jesse Sol Levinson

Jesse Sol Levinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10001775
    Abstract: A system, an apparatus or a process may be configured to implement an application that applies artificial intelligence and/or machine-learning techniques to predict an optimal course of action (or a subset of courses of action) for an autonomous vehicle system (e.g., one or more of a planner of an autonomous vehicle, a simulator, or a teleoperator) to undertake based on suboptimal autonomous vehicle performance and/or changes in detected sensor data (e.g., new buildings, landmarks, potholes, etc.). The application may determine a subset of trajectories based on a number of decisions and interactions when resolving an anomaly due to an event or condition. The application may use aggregated sensor data from multiple autonomous vehicles to assist in identifying events or conditions that might affect travel (e.g., using semantic scene classification). An optimal subset of trajectories may be formed based on recommendations responsive to semantic changes (e.g., road construction).
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: June 19, 2018
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Gabriel Thurston Sibley, Ashutosh Gajanan Rege
  • Publication number: 20180154829
    Abstract: Systems and methods implemented in algorithms, software, firmware, logic, or circuitry may be configured to process data to determine whether an object external to an autonomous vehicle is a person (e.g., such as a pedestrian) or other classification (e.g., such as a vehicle), and may be further configured to determine a position of the person relative to the autonomous vehicle. Logic may be configured to direct acoustic energy (e.g., via vehicular acoustic beam-forming) to an object external to the autonomous vehicle as an audible acoustic alert. The vehicle-related acoustic beam may be directed to a driver in another vehicle. Logic may be configured to track the motion of external objects, such as a pedestrian crossing from one side of the street to the other, and may correspondingly steer the direction of the vehicle-related acoustic beam(s) to track the person's movement.
    Type: Application
    Filed: December 19, 2017
    Publication date: June 7, 2018
    Inventors: Timothy David Kentley-Klay, Jesse Sol Levinson, Amanda Blair Lind
  • Publication number: 20180136651
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. More specifically, systems, devices, and methods are configured to initiate modification of trajectories to influence navigation of autonomous vehicles. In particular, a method may include receiving a teleoperation message via a communication link from an autonomous vehicle, detecting data from the teleoperation message specifying an event associated with the autonomous vehicle, identifying one or more courses of action to perform responsive to detecting the data specifying the event, and generating visualization data to present information associated with the event to a display of a teleoperator computing device.
    Type: Application
    Filed: October 21, 2016
    Publication date: May 17, 2018
    Inventors: Jesse Sol Levinson, Ashutosh Gajanan Rege, Rachad Youssef Gamara, Gabriel Thurston Sibley, Timothy David Kentley-Klay, Gary Linscott
  • Publication number: 20180136644
    Abstract: A system, an apparatus or a process may be configured to implement an application that applies artificial intelligence and/or machine-learning techniques to predict an optimal course of action (or a subset of courses of action) for an autonomous vehicle system (e.g., one or more of a planner of an autonomous vehicle, a simulator, or a teleoperator) to undertake based on suboptimal autonomous vehicle performance and/or changes in detected sensor data (e.g., new buildings, landmarks, potholes, etc.). The application may determine a subset of trajectories based on a number of decisions and interactions when resolving an anomaly due to an event or condition. The application may use aggregated sensor data from multiple autonomous vehicles to assist in identifying events or conditions that might affect travel (e.g., using semantic scene classification). An optimal subset of trajectories may be formed based on recommendations responsive to semantic changes (e.g., road construction).
    Type: Application
    Filed: December 28, 2016
    Publication date: May 17, 2018
    Inventors: Jesse Sol Levinson, Gabriel Thurston Sibley, Ashutosh Gajanan Rege
  • Patent number: 9916703
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. In particular, a method may include receiving data associated with a sensor measurement of a perceived object, determining a label associated with the perceived object based on an initial calibration, retrieving log file data associated with the label, determining a calibration parameter associated with the sensor measurement based on the retrieved log file data, and storing the calibration parameter in association with a sensor associated with the sensor measurement. Sensors may be calibrated on the fly while the autonomous vehicle is in operation using one or more other sensors and/or fused data from multiple types of sensors.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: March 13, 2018
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Bertrand Robert Douillard, Gabriel Thurston Sibley
  • Patent number: 9910441
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. More specifically, systems, devices, and methods are configured to generate trajectories to influence navigation of autonomous vehicles. In particular, a method may include receiving path data to navigate from a first geographic location to a second geographic location, generating data representing a trajectory with which to control motion of the autonomous vehicle based on the path data, generating data representing a contingent trajectory, monitoring generation of the trajectory, and implementing the contingent trajectory subsequent to an absence of the trajectory.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: March 6, 2018
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Gabriel Thurston Sibley, Timothy David Kentley-Klay
  • Patent number: 9878664
    Abstract: Systems and methods implemented in algorithms, software, firmware, logic, or circuitry may be configured to process data to determine whether an object external to an autonomous vehicle is a person (e.g., such as a pedestrian) or other classification (e.g., such as a vehicle), and may be further configured to determine a position of the person relative to the autonomous vehicle. Logic may be configured to direct acoustic energy (e.g., via vehicular acoustic beam-forming) to an object external to the autonomous vehicle as an audible acoustic alert. The vehicle-related acoustic beam may be directed to a driver in another vehicle. Logic may be configured to track the motion of external objects, such as a pedestrian crossing from one side of the street to the other, and may correspondingly steer the direction of the vehicle-related acoustic beam(s) to track the person's movement.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: January 30, 2018
    Assignee: Zoox, Inc.
    Inventors: Timothy David Kentley-Klay, Jesse Sol Levinson, Amanda Blair Lind
  • Publication number: 20170351261
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. In particular, a method may include receiving an indication of a sensor anomaly, determining one or more sensor recovery strategies based on the sensor anomaly, and executing a course of action that ensures the autonomous vehicle system operates within accepted parameters. Alternative sensors may be relied upon to cover for the sensor anomaly, which may include a failed sensor while the autonomous vehicle is in operation.
    Type: Application
    Filed: June 21, 2017
    Publication date: December 7, 2017
    Inventors: Jesse Sol Levinson, Timothy David Kentley-Klay, Bertrand Robert Douillard
  • Publication number: 20170316333
    Abstract: Systems, methods and apparatus may be configured to implement automatic semantic classification of a detected object(s) disposed in a region of an environment external to an autonomous vehicle. The automatic semantic classification may include analyzing over a time period, patterns in a predicted behavior of the detected object(s) to infer a semantic classification of the detected object(s). Analysis may include processing of sensor data from the autonomous vehicle to generate heat maps indicative of a location of the detected object(s) in the region during the time period. Probabilistic statistical analysis may be applied to the sensor data to determine a confidence level in the inferred semantic classification. The inferred semantic classification may be applied to the detected object(s) when the confidence level exceeds a predetermined threshold value (e.g., greater than 50%).
    Type: Application
    Filed: April 26, 2017
    Publication date: November 2, 2017
    Inventors: Jesse Sol Levinson, Gabriel Thurston Sibley, Ashutosh Gajanan Rege
  • Publication number: 20170297568
    Abstract: Systems and methods implemented in algorithms, software, firmware, logic, or circuitry may be configured to process data and sensory input to determine whether an object external to an autonomous vehicle (e.g., another vehicle, a pedestrian, road debris, a bicyclist, etc.) may be a potential collision threat to the autonomous vehicle. The autonomous vehicle may be configured to implement active safety measures to avoid the potential collision and/or mitigate the impact of an actual collision to passengers in the autonomous vehicle and/or to the autonomous vehicle itself. Interior safety systems, exterior safety systems, a drive system or some combination of those systems may be activated to implement active safety measures in the autonomous vehicle.
    Type: Application
    Filed: March 28, 2017
    Publication date: October 19, 2017
    Inventors: Timothy David Kentley, Jesse Sol Levinson, Amanda Blair Lind
  • Publication number: 20170248963
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide map data for autonomous vehicles. In particular, a method may include accessing subsets of multiple types of sensor data, aligning subsets of sensor data relative to a global coordinate system based on the multiple types of sensor data to form aligned sensor data, and generating datasets of three-dimensional map data. The method further includes detecting a change in data relative to at least two datasets of the three-dimensional map data and applying the change in data to form updated three-dimensional map data. The change in data may be representative of a state change of an environment at which the sensor data is sensed. The state change of the environment may be related to the presence or absences of an object located therein.
    Type: Application
    Filed: February 21, 2017
    Publication date: August 31, 2017
    Inventors: Jesse Sol Levinson, Gabriel Thurston Sibley
  • Publication number: 20170248964
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. In particular, a method may include monitoring a fleet of vehicles, at least one of which is configured to autonomously transit from a first geographic region to a second geographic region, detecting data indicating an event associated with the vehicle having a calculated confidence level, receiving data representing a subset of candidate trajectories responsive to detecting the event, which is associated with a planned path for the vehicle, identifying guidance data to select from one or more of the candidate trajectories as a guided trajectory, receiving data representing a selection of a candidate trajectory, and transmitting the selection of the candidate trajectory as of the guided trajectory to the vehicle.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 31, 2017
    Inventors: Timothy David Kentley, Jesse Sol Levinson, Rachad Youssef Gamara, Gabriel thurston Sibley
  • Patent number: 9734455
    Abstract: Systems, methods and apparatus may be configured to implement automatic semantic classification of a detected object(s) disposed in a region of an environment external to an autonomous vehicle. The automatic semantic classification may include analyzing over a time period, patterns in a predicted behavior of the detected object(s) to infer a semantic classification of the detected object(s). Analysis may include processing of sensor data from the autonomous vehicle to generate heat maps indicative of a location of the detected object(s) in the region during the time period. Probabilistic statistical analysis may be applied to the sensor data to determine a confidence level in the inferred semantic classification. The inferred semantic classification may be applied to the detected object(s) when the confidence level exceeds a predetermined threshold value (e.g., greater than 50%).
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: August 15, 2017
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Gabriel Thurston Sibley, Ashutosh Gajanan Rege
  • Patent number: 9720415
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. In particular, a method may include receiving an indication of a sensor anomaly, determining one or more sensor recovery strategies based on the sensor anomaly, and executing a course of action that ensures the autonomous vehicle system operates within accepted parameters. Alternative sensors may be relied upon to cover for the sensor anomaly, which may include a failed sensor while the autonomous vehicle is in operation.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: August 1, 2017
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Timothy David Kentley, Bertrand Robert Douillard
  • Publication number: 20170132334
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. More specifically, systems, devices, and methods are configured to simulate navigation of autonomous vehicles in various simulated environments. In particular, a method may include receiving data representing characteristics of a dynamic object, calculating a classification of a dynamic object to identify a classified dynamic object, identifying data representing dynamic-related characteristics associated with the classified dynamic object, forming a data model of the classified dynamic object, simulating a predicted range of motion of the classified dynamic object in a simulated environment to form a simulated dynamic object, and simulating a predicted response of a data representation of a simulated autonomous vehicle.
    Type: Application
    Filed: November 5, 2015
    Publication date: May 11, 2017
    Applicant: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Gabe Thurston Sibley, Ashutosh Gajanan Rege
  • Publication number: 20170124781
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. In particular, a method may include receiving data associated with a sensor measurement of a perceived object, determining a label associated with the perceived object based on an initial calibration, retrieving log file data associated with the label, determining a calibration parameter associated with the sensor measurement based on the retrieved log file data, and storing the calibration parameter in association with a sensor associated with the sensor measurement. Sensors may be calibrated on the fly while the autonomous vehicle is in operation using one or more other sensors and/or fused data from multiple types of sensors.
    Type: Application
    Filed: November 4, 2015
    Publication date: May 4, 2017
    Applicant: Zoox, Inc.
    Inventors: Bertrand Robert Douillard, Jesse Sol Levinson, Gabriel Thurston Sibley
  • Publication number: 20170124476
    Abstract: Systems, methods and apparatus may be configured to implement automatic semantic classification of a detected object(s) disposed in a region of an environment external to an autonomous vehicle. The automatic semantic classification may include analyzing over a time period, patterns in a predicted behavior of the detected object(s) to infer a semantic classification of the detected object(s). Analysis may include processing of sensor data from the autonomous vehicle to generate heat maps indicative of a location of the detected object(s) in the region during the time period. Probabilistic statistical analysis may be applied to the sensor data to determine a confidence level in the inferred semantic classification. The inferred semantic classification may be applied to the detected object(s) when the confidence level exceeds a predetermined threshold value (e.g., greater than 50%).
    Type: Application
    Filed: November 4, 2015
    Publication date: May 4, 2017
    Inventors: Jesse Sol Levinson, Gabriel Thurston Sibley, Ashutosh Gajanan Rege
  • Publication number: 20170123429
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. More specifically, systems, devices, and methods are configured to generate trajectories to influence navigation of autonomous vehicles. In particular, a method may include receiving path data to navigate from a first geographic location to a second geographic location, generating data representing a trajectory with which to control motion of the autonomous vehicle based on the path data, generating data representing a contingent trajectory, monitoring generation of the trajectory, and implementing the contingent trajectory subsequent to an absence of the trajectory.
    Type: Application
    Filed: November 4, 2015
    Publication date: May 4, 2017
    Inventors: Jesse Sol Levinson, Timothy David Kentley, Gabriel Thurston Sibley
  • Publication number: 20170120814
    Abstract: Systems and methods implemented in algorithms, software, firmware, logic, or circuitry may be configured to process data to determine whether an object external to an autonomous vehicle is a person (e.g., such as a pedestrian) or other classification (e.g., such as a vehicle), and may be further configured to determine a position of the person relative to the autonomous vehicle. Logic may be configured to direct acoustic energy (e.g., via vehicular acoustic beam-forming) to an object external to the autonomous vehicle as an audible acoustic alert. The vehicle-related acoustic beam may be directed to a driver in another vehicle. Logic may be configured to track the motion of external objects, such as a pedestrian crossing from one side of the street to the other, and may correspondingly steer the direction of the vehicle-related acoustic beam(s) to track the person's movement.
    Type: Application
    Filed: November 4, 2015
    Publication date: May 4, 2017
    Applicant: Zoox, Inc.
    Inventors: Timothy David Kentley, Amanda Blair Lind, Jesse Sol Levinson
  • Publication number: 20170120904
    Abstract: Systems and methods implemented in algorithms, software, firmware, logic, or circuitry may be configured to process data and sensory input to determine whether an object external to an autonomous vehicle (e.g., another vehicle, a pedestrian, road debris, a bicyclist, etc.) may be a potential collision threat to the autonomous vehicle. The autonomous vehicle may be configured to implement active safety measures to avoid the potential collision and/or mitigate the impact of an actual collision to passengers in the autonomous vehicle and/or to the autonomous vehicle itself. Interior safety systems, exterior safety systems, a drive system or some combination of those systems may be activated to implement active safety measures in the autonomous vehicle.
    Type: Application
    Filed: November 4, 2015
    Publication date: May 4, 2017
    Applicant: Zoox, Inc.
    Inventors: Timothy David Kentley, Jesse Sol Levinson, Amanda Blair Lind