Patents by Inventor Jheng-Sheng YOU

Jheng-Sheng YOU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240055508
    Abstract: A nitride-based semiconductor device includes a first nitride-based semiconductor layer, a second nitride-based semiconductor layer, a doped nitride-based semiconductor layer, a gate electrode, and a protection layer. The doped nitride-based semiconductor layer has a first portion and a second portion over the first portion and narrower than the first portion. The gate electrode is disposed over the doped nitride-based semiconductor layer and narrower than the first portion. The protection layer is disposed over the doped nitride-based semiconductor layer and the gate electrode. A top surface of the first portion of the doped nitride-based semiconductor layer is covered by the protection layer, and a sidewall of the first portion of the doped nitride-based semiconductor layer is free from coverage by the protection layer.
    Type: Application
    Filed: January 11, 2022
    Publication date: February 15, 2024
    Inventors: Jian RAO, Jheng-Sheng YOU, Weixing DU, Ming-Hong CHANG
  • Patent number: 11901433
    Abstract: A device includes a first III-V compound layer, a second III-V compound layer, a dielectric layer, a contact, a metal-containing layer, and a metal contact. The second III-V compound layer is over the first III-V compound layer. The dielectric layer is over the second III-V compound layer. The contact extends through the dielectric layer to the second III-V compound layer. The contact is in contact with a top surface of the dielectric layer and an inner sidewall of the dielectric layer. The metal-containing layer is over and in contact with the contact, and a portion of the metal-containing layer is directly above the dielectric layer. The metal contact is over and in contact with the metal-containing layer.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jheng-Sheng You, Hsin-Chih Lin, Kun-Ming Huang, Lieh-Chuan Chen, Po-Tao Chu, Shen-Ping Wang, Chien-Li Kuo
  • Publication number: 20240038887
    Abstract: A semiconductor device includes a first and a second nitride-based semiconductor layers, a gate electrode, and a doped nitride-based semiconductor layer. The doped nitride-based semiconductor layer is disposed between the second nitride-based semiconductor layer and the gate electrode. The doped nitride-based semiconductor layer has a pair of opposite ledge portions free from coverage of the gate electrode and a central portion therebetween. The second nitride-based semiconductor layer has a first portion beneath the central portion and a second portion beneath the ledge portion, and the second nitride-based semiconductor layer has a doping concentration of a dopant that selected from a highly electronegative group, in which the doping concentration from the first portion to the second portion increases.
    Type: Application
    Filed: December 31, 2021
    Publication date: February 1, 2024
    Inventors: Ziming DU, Changan LI, Weixing DU, Jheng-Sheng YOU
  • Publication number: 20240030331
    Abstract: A semiconductor device includes a first nitride-based semiconductor layer, a second nitride-based semiconductor layer, a doped nitride-based semiconductor layer, a gate electrode, a first oxynitride dielectric layer, a first passivation layer, a second oxynitride dielectric layer, a second passivation layer, and a S/D electrode. The first oxynitride dielectric layer is disposed over the second nitride-based semiconductor layer and conformally covers the doped nitride-based semiconductor layer and the gate electrode. The first passivation layer is disposed on the first oxynitride dielectric layer and in contact with the first oxynitride dielectric layer. The second oxynitride dielectric layer is disposed on the first passivation layer and in contact with the first passivation layer. The second passivation layer is disposed on the second oxynitride dielectric layer and in contact with the second oxynitride dielectric layer.
    Type: Application
    Filed: August 6, 2021
    Publication date: January 25, 2024
    Inventors: Yang LIU, Weixing DU, Pan WANG, Jheng-Sheng YOU
  • Patent number: 11862721
    Abstract: A semiconductor device includes a semiconductor substrate, first and second nitride-based semiconductor layers, S/D electrodes, a gate electrode, and a first passivation layer. The first nitride-based semiconductor layer is disposed over the semiconductor substrate. The second nitride-based semiconductor layer is disposed on the first nitride-based semiconductor layer and has a bandgap greater than a bandgap of the first nitride-based semiconductor layer, so as to form a 2DEG region. The S/D electrodes is disposed over the second nitride-based semiconductor layer. The gate electrode is disposed between the S/D electrodes. The first passivation layer is disposed over the second nitride-based semiconductor layer. Edges of the first and second nitride-based semiconductor layers and the first passivation layer collectively form a stepped sidewall over the semiconductor substrate.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: January 2, 2024
    Assignee: INNOSCIENCE (SUZHOU) TECHNOLOGY CO., LTD.
    Inventors: Yulong Zhang, Jue Ouyang, Wei Huang, Jheng-Sheng You
  • Publication number: 20230369424
    Abstract: A nitride-based semiconductor device includes a first and a second nitride-based semiconductor layers, a source electrode and a drain electrode, a gate structure, a passivation layer and a field plate. The passivation layer is disposed above the second nitride-based semiconductor layer and covers the gate structure and has an enclosed air gap between the gate structure and the drain electrode. The field plate is disposed above the passivation layer and has a first portion directly over the gate structure and a second portion directly over the air gap. The second portion is separated from the air gap by at least one dielectric of the passivation layer.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 16, 2023
    Inventors: Jheng-Sheng YOU, Weixing DU
  • Publication number: 20230369423
    Abstract: A semiconductor device includes a first nitride-based semiconductor layer, a second nitride-based semiconductor layer, a source electrode and a drain electrode, a gate structure, a first passivation layer, a second passivation layer and a field plate. The second nitride-based semiconductor layer is disposed on the first nitride-based semiconductor layer. The source electrode, the drain electrode, and the gate structure are disposed above the second nitride-based semiconductor layer. The first passivation layer is disposed above the second nitride-based semiconductor layer and covers the gate structure. The second passivation layer is disposed above the first passivation layer and in a region between the source and drain electrodes. The field plate is disposed above the second passivation layer and in the region between the source electrode and drain electrode, in which the field plate contacts at least one enclosed air gap above the first passivation layer.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 16, 2023
    Inventors: Weixing DU, Jheng-Sheng YOU
  • Publication number: 20230343864
    Abstract: A nitride-based semiconductor device includes a first nitride-based semiconductor layer, a second nitride-based semiconductor layer, a nitride-based layer, and a plurality of gate electrodes. The second nitride-based semiconductor layer is disposed on the first nitride-based semiconductor layer and has a bandgap greater than a bandgap of the first nitride-based semiconductor layer. The nitride-based layer is disposed over the second nitride-based semiconductor layer and extends along a first direction to have a strip profile. The gate electrodes are disposed over the nitride-based layer and arranged along the first direction such that at least two of the gate electrodes are separated from each other.
    Type: Application
    Filed: December 7, 2021
    Publication date: October 26, 2023
    Inventors: Jian RAO, Jheng-Sheng YOU, Po-Wei CHEN, Ming-Hong CHANG
  • Patent number: 11777023
    Abstract: A semiconductor device includes a substrate, a first GaN-based high-electron-mobility transistor (HEMT), a second GaN-based HEMT, a first interconnection, and a second interconnection is provided. The substrate has a plurality of first-type doped semiconductor regions and second-type doped semiconductor regions. The first GaN-based HEMT is disposed over the substrate to cover a first region on the first-type doped semiconductor regions and the second-type doped semiconductor regions in the substrate. The second GaN-based HEMT is disposed over the substrate to cover a second region. The first region is different from the second region. The first interconnection is disposed over and electrically connected to the substrate, forming a first interface. The second interconnection is disposed over and electrically connected to the substrate, forming a second interface. The first interface is separated from the second interface by at least two heterojunctions formed in the substrate.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: October 3, 2023
    Assignee: Innoscience (Suzhou) Technology Co., Ltd.
    Inventors: Weixing Du, Jheng-Sheng You
  • Publication number: 20230215912
    Abstract: A semiconductor device includes a first nitride-based semiconductor layer, a second nitride-based semiconductor layer, a gate electrode, a source electrode, a drain electrode, and a group of negatively-charged ions. The gate electrode is located between the source and drain electrodes to define a drift region between the gate and drain electrodes. A group of negatively-charged ions are implanted into the drift region and over the 2DEG region and spaced apart from the gate and drain electrodes and spaced apart from an area directly beneath the gate and drain electrodes. The gate electrode is closer to the negatively-charged ions than the drain electrode, such that the negatively-charged ions deplete at least one portion of the 2DEG region which is near the gate electrode.
    Type: Application
    Filed: March 9, 2022
    Publication date: July 6, 2023
    Inventors: Ziming DU, Changan LI, Weixing DU, Jheng-Sheng YOU
  • Publication number: 20230215939
    Abstract: A semiconductor device includes a first nitride-based semiconductor layer, a second nitride-based semiconductor layer, a group of negatively-charged ions, and a field plate. The gate electrode and the drain electrode disposed above the second nitride-based semiconductor layer to define a drift region therebetween. The group of negatively-charged ions are implanted into the drift region and spaced apart from an area directly beneath the gate and drain electrodes to form at least one high resistivity zone in the second nitride-based semiconductor layer. The field plate is disposed over the gate electrode and extends in a region between the gate electrode and the high resistivity zone.
    Type: Application
    Filed: March 9, 2022
    Publication date: July 6, 2023
    Inventors: Ziming DU, Changan LI, Weixing DU, Jheng-Sheng YOU
  • Publication number: 20220336631
    Abstract: A device includes a first III-V compound layer, a second III-V compound layer, source and drain structures, a gate structure, and a gate field plate. The second III-V compound layer is over the first III-V compound layer. The source and drain structures are over the second III-V compound layer and spaced apart from each other. The gate structure is over the second III-V compound layer and between the source and drain structures. The gate field plate is over the second III-V compound. From a top view the gate field plate forms a strip pattern interposing a stripe pattern of the gate structure and a stripe pattern of the drain structure.
    Type: Application
    Filed: July 5, 2022
    Publication date: October 20, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jheng-Sheng YOU, Hsin-Chih LIN, Kun-Ming HUANG, Lieh-Chuan CHEN, Po-Tao CHU, Shen-Ping WANG, Chien-Li KUO
  • Publication number: 20220302296
    Abstract: A semiconductor device includes a semiconductor substrate, first and second nitride-based semiconductor layers, S/D electrodes, a gate electrode, and a first passivation layer. The first nitride-based semiconductor layer is disposed over the semiconductor substrate. The second nitride-based semiconductor layer is disposed on the first nitride-based semiconductor layer and has a bandgap greater than a bandgap of the first nitride-based semiconductor layer, so as to form a 2DEG region. The S/D electrodes is disposed over the second nitride-based semiconductor layer. The gate electrode is disposed between the S/D electrodes. The first passivation layer is disposed over the second nitride-based semiconductor layer. Edges of the first and second nitride-based semiconductor layers and the first passivation layer collectively form a stepped sidewall over the semiconductor substrate.
    Type: Application
    Filed: September 30, 2020
    Publication date: September 22, 2022
    Inventors: Yulong ZHANG, Jue OUYANG, Wei HUANG, Jheng-Sheng YOU
  • Publication number: 20220302295
    Abstract: A semiconductor device includes a substrate, a first GaN-based high-electron-mobility transistor (HEMT), a second GaN-based HEMT, a first interconnection, and a second interconnection is provided. The substrate has a plurality of first-type doped semiconductor regions and second-type doped semiconductor regions. The first GaN-based HEMT is disposed over the substrate to cover a first region on the first-type doped semiconductor regions and the second-type doped semiconductor regions in the substrate. The second GaN-based HEMT is disposed over the substrate to cover a second region. The first region is different from the second region. The first interconnection is disposed over and electrically connected to the substrate, forming a first interface. The second interconnection is disposed over and electrically connected to the substrate, forming a second interface. The first interface is separated from the second interface by at least two heterojunctions formed in the substrate.
    Type: Application
    Filed: October 20, 2020
    Publication date: September 22, 2022
    Inventors: Weixing DU, Jheng-Sheng YOU
  • Patent number: 11374107
    Abstract: A high electron mobility transistor (HEMT) includes a first III-V compound layer, a second III-V compound layer over the first III-V compound layer, source and drain structures over the second III-V compound layer and spaced apart from each other, a gate structure over the second III-V compound layer and between the source and drain structures, a gate field plate over the second III-V compound layer and between the gate structure and the drain structure, and an etch stop layer over the drain structure and spaced apart from the gate field plate.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: June 28, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jheng-Sheng You, Hsin-Chih Lin, Kun-Ming Huang, Lieh-Chuan Chen, Po-Tao Chu, Shen-Ping Wang, Chien-Li Kuo
  • Publication number: 20210384319
    Abstract: A device includes a first III-V compound layer, a second III-V compound layer, a dielectric layer, a contact, a metal-containing layer, and a metal contact. The second III-V compound layer is over the first III-V compound layer. The dielectric layer is over the second III-V compound layer. The contact extends through the dielectric layer to the second III-V compound layer. The contact is in contact with a top surface of the dielectric layer and an inner sidewall of the dielectric layer. The metal-containing layer is over and in contact with the contact, and a portion of the metal-containing layer is directly above the dielectric layer. The metal contact is over and in contact with the metal-containing layer.
    Type: Application
    Filed: August 24, 2021
    Publication date: December 9, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jheng-Sheng YOU, Hsin-Chih LIN, Kun-Ming HUANG, Lieh-Chuan CHEN, Po-Tao CHU, Shen-Ping WANG, Chien-Li KUO
  • Publication number: 20200312983
    Abstract: A high electron mobility transistor (HEMT) includes a first III-V compound layer, a second III-V compound layer over the first III-V compound layer, source and drain structures over the second III-V compound layer and spaced apart from each other, a gate structure over the second III-V compound layer and between the source and drain structures, a gate field plate over the second III-V compound layer and between the gate structure and the drain structure, and an etch stop layer over the drain structure and spaced apart from the gate field plate.
    Type: Application
    Filed: June 15, 2020
    Publication date: October 1, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jheng-Sheng YOU, Hsin-Chih LIN, Kun-Ming HUANG, Lieh-Chuan CHEN, Po-Tao CHU, Shen-Ping WANG, Chien-Li KUO
  • Patent number: 10686054
    Abstract: A semiconductor device includes a first III-V compound layer, a second III-V compound layer over the first III-V compound layer, a source contact and a drain contact over the second III-V compound layer, a gate contact over the second III-V compound layer and between the source contact and the drain contact, a gate field plate over the second III-V compound layer, a first etch stop layer over the source contact, and a second etch stop layer over the drain contact and separated from the first etch stop layer.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: June 16, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jheng-Sheng You, Hsin-Chih Lin, Kun-Ming Huang, Lieh-Chuan Chen, Po-Tao Chu, Shen-Ping Wang, Chien-Li Kuo
  • Publication number: 20190109210
    Abstract: A semiconductor device includes a first III-V compound layer, a second III-V compound layer over the first III-V compound layer, a source contact and a drain contact over the second III-V compound layer, a gate contact over the second III-V compound layer and between the source contact and the drain contact, a gate field plate over the second III-V compound layer, a first etch stop layer over the source contact, and a second etch stop layer over the drain contact and separated from the first etch stop layer.
    Type: Application
    Filed: November 19, 2018
    Publication date: April 11, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jheng-Sheng YOU, Hsin-Chih LIN, Kun-Ming HUANG, Lieh-Chuan CHEN, Po-Tao CHU, Shen-Ping WANG, Chien-Li KUO
  • Patent number: 10134867
    Abstract: A method for manufacturing semiconductor device includes depositing a contact metal layer over a III-V compound layer. An anti-reflective coating (ARC) layer is deposited over the contact metal layer, and an etch stop layer is deposited over the ARC layer. The etch stop layer, the ARC layer, and the contact metal layer are etched to form a contact stack over the III-V compound layer. A conductive layer is deposited over the III-V compound layer, and the conductive layer is etched to form a gate field plate. The etch stop layer has an etch selectivity different from that of the conductive layer.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: November 20, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jheng-Sheng You, Hsin-Chih Lin, Kun-Ming Huang, Lieh-Chuan Chen, Po-Tao Chu, Shen-Ping Wang, Chien-Li Kuo