Patents by Inventor Jihan Ryu

Jihan Ryu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955077
    Abstract: An electronic device may include: a housing; a display which is viewed through at least a portion of the housing and which displays a screen image by using a plurality of pixels; a display driving circuit for providing, to the display, a data voltage an emission signal for driving each of the plurality of pixels; and a processor operationally connected to the display and the display driving circuit. The processor can be configured to set a first frame driven by the display, and the display driving circuit can be configured to set a first period in which the data voltage is supplied to a first transistor in each of the plurality of pixels and a second period in which the data voltage written in the first period is maintained and to change the initialization voltage to be supplied to the plurality of pixels in the second period. Various other embodiments identified from the specification are also possible.
    Type: Grant
    Filed: July 6, 2022
    Date of Patent: April 9, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Namhyeon Jeon, Jitae Kim, Sungwon Ryu, Hyunchang Shin, Gyudong Eom, Youngman Lee, Jihan Lee
  • Patent number: 10296021
    Abstract: The present subject matter relates to systems and methods for active vibration control system speed monitoring and control in which a speed protection monitor configured to receive index pulses as inputs to monitor the speed of one or more force generators. A rotary actuator control system can be connected in communication with the speed protection monitor and the one or more force generators, wherein the rotary actuator control system is configured to shut down or adjust the speed of the one or more force generators if the one or more force generators are determined to be operating at undesired speeds.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: May 21, 2019
    Assignee: LORD Corporation
    Inventors: Doug A. Swanson, Paul R. Black, David Clark, Matthew K. Ferguson, Jihan Ryu
  • Patent number: 9878781
    Abstract: Improved active vibration control (AVC) devices, systems, and related methods are provided herein. An AVC device includes a controller adapted to receive real-time aircraft information and adjust at least one control parameter as a function of the real-time aircraft information is provided. An AVC device is adapted to detect changes in real-time aircraft information, as the aircraft moves from a steady state to transient performance, low and high air speeds, or vice versa. An AVC system (e.g., AVCS) includes one or more sensors, one or more actuators, and a controller adapted to receive real-time aircraft information and adjust at least one control parameter. In some aspects, a method of controlling vibration within an aircraft includes receiving vibration information from at least one sensor, receiving real-time aircraft information from an avionics system, adjusting at least one control parameter used in a control algorithm, and generating a force command.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: January 30, 2018
    Assignee: LORD Corporation
    Inventors: Doug A. Swanson, Paul R. Black, Jihan Ryu, Stephen C. Southward, Doug G. Pedersen
  • Patent number: 9701402
    Abstract: Improved active vibration control (AVC) devices (20), systems, and related methods are provided herein. An AVC device (20) includes a controller (24) adapted to receive real-time aircraft information and adjust at least one control parameter as a function of the real-time aircraft information is provided. An AVC device is adapted to detect changes in real-time aircraft information, as the aircraft moves from a steady state to transient performance, low and high air speeds, or vice versa. An AVC system (e.g., AVCS) includes one or more sensors (22), one or more actuators (26), and a controller (24) adapted to receive real-time aircraft information and adjust at least one control parameter. In some aspects, a method of controlling vibration within an aircraft includes receiving vibration information from at least one sensor (22), receiving real-time aircraft information from an avionics system (40), adjusting at least one control parameter used in a control algorithm, and generating a force command.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: July 11, 2017
    Assignee: LORD Corporation
    Inventors: Doug A. Swanson, Paul R. Black, Jihan Ryu, Stephen C. Southward, Doug G. Pedersen
  • Publication number: 20170008620
    Abstract: Improved active vibration control (AVC) devices, systems, and related methods are provided herein. An AVC device includes a controller adapted to receive real-time aircraft information and adjust at least one control parameter as a function of the real-time aircraft information is provided. An AVC device is adapted to detect changes in real-time aircraft information, as the aircraft moves from a steady state to transient performance, low and high air speeds, or vice versa. An AVC system (e.g., AVCS) includes one or more sensors, one or more actuators, and a controller adapted to receive real-time aircraft information and adjust at least one control parameter. In some aspects, a method of controlling vibration within an aircraft includes receiving vibration information from at least one sensor, receiving real-time aircraft information from an avionics system, adjusting at least one control parameter used in a control algorithm, and generating a force command.
    Type: Application
    Filed: May 24, 2016
    Publication date: January 12, 2017
    Inventors: Doug A. SWANSON, Paul R. BLACK, Jihan RYU, Steve C. SOUTHWARD, Doug G. PEDERSEN
  • Patent number: 9409518
    Abstract: A system for enabling a driver of a vehicle to visibly observe objects located in a blind spot includes, but is not limited to, a rear view viewing device that is mounted to the vehicle and configured to be electronically adjustable. The system further includes a sensor that is associated with the vehicle and that is configured to detect a location of an object with respect to the vehicle and to generate a first signal indicative of the location of the object. The system further includes a processor that is communicatively coupled with the sensor and that is operatively coupled with the rear view viewing device. The processor is configured to obtain the first signal from the sensor and to command the rear view viewing device to adjust such that the object is visibly observable to the driver when the processor receives the first signal.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: August 9, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dorel M. Sala, Jihan Ryu, Jan H. Aase
  • Patent number: 9285485
    Abstract: A method is provided for estimating vehicle velocity for a vehicle using a single-antenna global positioning system (GPS). An absolute speed and a course angle of the vehicle is measured using the single-antenna GPS. The yaw rates of the vehicle are measured independently of the GPS. An integrated yaw rate of the vehicle is calculated as a function of the measured yaw rates over a period of time. A yaw angle is determined as a function of a reference yaw angle and the integrated yaw rate. Aside slip angle is calculated as a function of the estimated yaw angle and the course angle provided by the GPS. The vehicle velocity is determined as a function of the absolute speed and the side slip angle. The vehicle velocity is provided to a vehicle dynamic control application.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: March 15, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Kevin A. O'Dea, Jihan Ryu, Flavio Nardi, Hualin Tan
  • Publication number: 20160009386
    Abstract: Improved force generator (FG) devices and methods are provided herein. A FG device (10) includes a housing (16, 18), a shaft (S) centrally disposed within the housing, and multiple imbalance rotors (30, 32, 34, 36, 38) disposed within the housing and provided along the shaft. At least two pairs (PA, PB) of imbalance rotors are provided in a nested configuration with respect to each other along the shaft. The at least two pairs (PA, PB) of imbalance rotors are supported in the nested configuration by large and small bearings (BA, BB). Any two imbalance rotors are paired to rotate together in a same direction according to a desired vibration canceling force. A method of controlling vibration within a structure is provided. The method includes detecting vibration, receiving a force command at a FG device, and pairing any two imbalance masses together and rotating a pair of imbalance masses via the rotors together in a same direction to cancel the detected vibration.
    Type: Application
    Filed: March 20, 2014
    Publication date: January 14, 2016
    Applicant: LORD CORPORATION
    Inventors: Michael W. TRULL, Michael D. JANOWSKI, Jihan RYU, Reuben SCHUFF, John Mark FREEZE
  • Publication number: 20150375857
    Abstract: Improved active vibration control (AVC) devices (20), systems, and related methods are provided herein. An AVC device (20) includes a controller (24) adapted to receive real-time aircraft information and adjust at least one control parameter as a function of the real-time aircraft information is provided. An AVC device is adapted to detect changes in real-time aircraft information, as the aircraft moves from a steady state to transient performance, low and high air speeds, or vice versa. An AVC system (e.g., AVCS) includes one or more sensors (22), one or more actuators (26), and a controller (24) adapted to receive real-time aircraft information and adjust at least one control parameter. In some aspects, a method of controlling vibration within an aircraft includes receiving vibration information from at least one sensor (22), receiving real-time aircraft information from an avionics system (40), adjusting at least one control parameter used in a control algorithm, and generating a force command.
    Type: Application
    Filed: January 17, 2014
    Publication date: December 31, 2015
    Inventors: Doug A. SWANSON, Paul R. BLACK, Jihan RYU, Steve C. SOUTHWARD, Doug G. PEDERSEN
  • Publication number: 20150346739
    Abstract: The present subject matter relates to systems and methods for active vibration control system speed monitoring and control in which a speed protection monitor configured to receive index pulses as inputs to monitor the speed of one or more force generators. A rotary actuator control system can be connected in communication with the speed protection monitor and the one or more force generators, wherein the rotary actuator control system is configured to shut down or adjust the speed of the one or more force generators if the one or more force generators are determined to be operating at undesired speeds.
    Type: Application
    Filed: January 17, 2014
    Publication date: December 3, 2015
    Inventors: Doug A. SWANSON, Paul R. BLACK, David CLARK, Matthew K. FERGUSON, Jihan RYU
  • Publication number: 20150321753
    Abstract: Improved circular force generator devices (100), systems, and methods for use in an active vibration control system are disclosed. The present subject matter can include improved rotary actuator devices, systems, and methods in which a center shaft (120) is positioned in a fixed relationship with respect to a component housing (114). At least one movable body can be positioned in the component housing and rotatably coupled to the center shaft by a radial bearing (130), the at least one movable body comprising a motor (110) and at least one eccentric mass (150). With this configuration, the motor can be configured to cause rotation of the movable body about the center shaft to produce a rotating force with a controllable rotating force magnitude and a controllable rotating force phase.
    Type: Application
    Filed: November 22, 2013
    Publication date: November 12, 2015
    Inventors: Paul R. BLACK, Doug A. SWANSON, Askari BADRE-ALAM, Michael D. JANOWSKI, Russell E. ALTIERI, Andrew D. MEYERS, Jihan RYU
  • Patent number: 8930079
    Abstract: A vehicle steering system includes an automatic steering control unit configured to control the vehicle steering system when in an automatic operational state and a driver intervention unit is configured to determine driver intervention during the automatic operational state. The driver intervention unit comprising a decision software module configured to determine driver intervention.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: January 6, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Yong H. Lee, Jihan Ryu, Weiwen Deng
  • Patent number: 8890747
    Abstract: A system and method is provided for determining a lateral velocity and a longitudinal velocity of a vehicle equipped. The vehicle includes only one antenna for a GPS receiver and a magnetic compass. A magnitude of a velocity vector of the vehicle is determined. A course angle with respect to a fixed reference using the single antenna GPS receiver is determined. A yaw angle of the vehicle is measured with respect to the fixed reference using a magnetic compass. A side slip angle is calculated as a function of the course angle and the yaw angle. The lateral velocity and longitudinal velocity is determined as a function of the magnitude of the velocity vector and the side slip angle.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: November 18, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Flavio Nardi, Nikolai K. Moshchuk, Jihan Ryu, Kevin A. O'Dea
  • Patent number: 8886434
    Abstract: A method of stabilizing a vehicle is provided. The vehicle is travelling at a forward speed and a lateral speed, and comprises a lateral acceleration sensor, a yaw sensor adapted to detect an actual yaw rate of the vehicle around a central axis, a steering mechanism adapted to steer the vehicle by a steered yaw rate, and an electronic stability control system.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: November 11, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Kevin A. O'Dea, Flavio Nardi, Jihan Ryu
  • Patent number: 8855856
    Abstract: A system for providing vehicle roll control that controls the friction-force of dampers provided at the wheels of the vehicle. The system includes a lateral acceleration sensor for determining the lateral acceleration of the vehicle, a steering angle sensor for determining the steering angle of the vehicle and a speed sensor for determining the speed of the vehicle. The system calculates a current control signal for one or more of the dampers based on the lateral acceleration and/or the steering angle, and uses one or both of the current control signals to control the friction-force of the inside, outside or both of the dampers.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: October 7, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Jihan Ryu, Chandra S. Namuduri
  • Patent number: 8706347
    Abstract: A method to monitor alignment of wheels of a vehicle through analysis of a GPS signal includes monitoring the GPS signal, determining an actual trajectory of the vehicle based upon the GPS signal, monitoring a vehicle sensor indicating an expected change in vehicle heading, determining an expected trajectory of the vehicle based upon the vehicle sensor, and indicating misalignment of the wheels of the vehicle based upon a comparison of the trajectories.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: April 22, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Hong S. Bae, Jihan Ryu
  • Patent number: 8509993
    Abstract: Systems and methods for detecting road bank and determining road bank angle include determining a road bank angle as a function of difference in slip angle where the difference in slip angle is a function of difference in course angle and difference in yaw angle.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: August 13, 2013
    Assignee: GM Global Technology Operations, Inc
    Inventors: Jihan Ryu, Flavio Nardi, Kevin A. O'Dea, Hualin Tan
  • Publication number: 20130155534
    Abstract: A system for enabling a driver of a vehicle to visibly observe objects located in a blind spot includes, but is not limited to, a rear view viewing device that is mounted to the vehicle and configured to be electronically adjustable. The system further includes a sensor that is associated with the vehicle and that is configured to detect a location of an object with respect to the vehicle and to generate a first signal indicative of the location of the object. The system further includes a processor that is communicatively coupled with the sensor and that is operatively coupled with the rear view viewing device. The processor is configured to obtain the first signal from the sensor and to command the rear view viewing device to adjust such that the object is visibly observable to the driver when the processor receives the first signal.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 20, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: DOREL M. SALA, JIHAN RYU, JAN H. AASE
  • Patent number: 8457841
    Abstract: An analytical methodology for the specification of progressive optimal compression damping of a suspension system to negotiate severe events, yet provides very acceptable ride quality and handling during routine events. In a broad aspect, the method provides a progressive optimal unconstrained damping response of the wheel assembly with respect to the body. In a preferred aspect, the method provides a progressive optimal constrained damping response of the wheel assembly with respect to the body, wherein below a predetermined velocity a conventional damper force is retained.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: June 4, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Richard J. Knoll, William Golpe, Nikolai K. Moshchuk, Chandra S. Namuduri, Flavio Nardi, Jihan Ryu, Raviraj U. Nayak
  • Patent number: 8428819
    Abstract: An analytical methodology for the specification of progressive optimal compression damping of a damper of a suspension system to negotiate a multiplicity of severe events, yet provides very acceptable ride quality and handling during routine events. The damping response of the damper is optimized based upon a progressive optimal constrained events damping function derived from a low envelope curve incorporated with a predetermined damper force acting on the wheel center below a predetermined wheel center velocity, u1, based on ride and handling considerations for a given vehicle or vehicle model according to the prior art methodology, whereby the low envelope curve is constructed utilizing a one degree of freedom nonlinear mechanical system model or a quarter car nonlinear mechanical system model.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: April 23, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Nikolai K. Moshchuk, Chandra S. Namuduri, Flavio Nardi, Jihan Ryu, Richard J. Knoll, William Golpe