Patents by Inventor Jihan Ryu

Jihan Ryu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8417417
    Abstract: A method to control a vehicle includes monitoring desired vehicle force and moment, monitoring real-time corner constraints upon vehicle dynamics which includes monitoring corner states of health for the vehicle, and monitoring corner capacities for the vehicle. The method further includes determining a desired corner force and moment distribution based upon the desired vehicle force and moment and the real-time corner constraints, and controlling the vehicle based upon the desired corner force and moment distribution.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: April 9, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Shih-Ken Chen, Weiwen Deng, Youssef A. Ghoneim, Nikolai K. Moshohuk, Flavio Nardi, Jihan Ryu, Kevin A. O'Dea
  • Patent number: 8391554
    Abstract: A system and a method for detecting the eyes of a driver of a vehicle using a single camera. The method includes determining a set of positional parameters corresponding to a driving seat of the vehicle. The camera is positioned at a pre-determined location inside the vehicle, and a set of parameters corresponding to the camera is determined. The location of the driver's eyes is detected using the set of positional parameters, an image of the driver's face and the set of parameters corresponding to the camera.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: March 5, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Jin-Woo Lee, Kwang-Keun Shin, Jihan Ryu, Bakhtiar Brian Litkouhi
  • Patent number: 8326487
    Abstract: A method for estimating the normal force at a wheel of a vehicle and the vertical acceleration of the vehicle that has particular application for ride and stability control of the vehicle. The method includes obtaining a suspension displacement value from at least one of a plurality of suspension displacement sensors mounted on the vehicle and estimating a spring force acting on a spring of a suspension element of the vehicle, a damper force acting on a damper of the suspension element of the vehicle, and a force acting at a center of a wheel. The method further includes determining a normal force at the wheel of the vehicle and a vertical acceleration of the vehicle based on the spring force, the damper force and the force at the center of the wheel of the vehicle.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: December 4, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Nikolai K. Moschuk, Flavio Nardi, Jihan Ryu, Kevin A. O'Dea
  • Patent number: 8297763
    Abstract: A system and method for automatically adjusting the viewing angle of both side rear-view mirrors on a vehicle when the vehicle is traveling on a hill. The system estimates the slope of the hill, and uses the estimated slope to determine a corrected viewing angle of the rear-view mirrors. Depending on whether the vehicle is traveling uphill or down-hill, would depend on which direction the rear-view mirrors will be adjusted.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: October 30, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Jin-Woo Lee, Jihan Ryu, Kwang-Keun Shin, Bakhtiar Brian Litkouhi
  • Patent number: 8234090
    Abstract: A system and method for estimating vehicle lateral velocity that defines a relationship between front and rear axle lateral forces and front and rear axle side-slip angles. The method includes providing measurements of vehicle yaw-rate, lateral acceleration, longitudinal speed, and steering angle. The method also includes using these measurements to provide a measurement of the front and rear axle forces. The method calculates a front axle lateral velocity and a rear axle lateral velocity, and calculates a front axle side-slip angle based on the rear axle lateral velocity and a rear axle side-slip angle based on the front axle lateral velocity. The method then estimates front and rear axle forces, and selects a virtual lateral velocity that minimizes an error between the estimated and measured lateral axle forces. The method then provides an estimated vehicle lateral velocity using the selected virtual lateral velocity.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: July 31, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Flavio Nardi, Jihan Ryu, Nikolai K. Moshchuk, Kevin A. O'Dea
  • Patent number: 8200397
    Abstract: Mirrors on a motor vehicle are adjusted by monitoring the position of a first, preferably manually adjusted, mirror and adjusting the position of additional mirrors based on the monitored position of the first one of the mirrors.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: June 12, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Jihan Ryu, Kwang-Keun Shin, Jin-Woo Lee, Bakhtiar Brian Litkouhi
  • Patent number: 8192036
    Abstract: A system and method for automatically correcting the viewing angle of a rear-view mirror on a vehicle towing a trailer when the vehicle is traveling around a curve. If the dimensions of the trailer are unknown, then the corrected viewing angle is the same as the hitch angle between the vehicle and the trailer. If the dimensions of the trailer are known, then trigonometry is used to determine the corrected viewing angle. Depending on whether the road is curving to the right or to the left will determine whether the left side rear-view mirror or the right side rear-view mirror is adjusted.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: June 5, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Jin-Woo Lee, Jihan Ryu, Kwang-Keun Shin, Bakhtiar Brian Litkouhi
  • Patent number: 8170751
    Abstract: A method for controlling an assisted steering maneuver in an electric power steering (EPS) system includes modeling steering dynamics during a torque overlay operation to generate a dynamic steering model (DSM), measuring vehicle operating values, and detecting a driver intervention in the torque overlay operation based on the DSM and the vehicle operating values. The torque overlay operation is overridden when driver intervention is detected, allowing the driver to regain control of the steering maneuver. A vehicle includes a steering wheel, a steering assist mechanism, and an EPS system having an electronic control unit (ECU) adapted to determine a present intent of a driver of the vehicle to interrupt application of the TOC based on a vehicle operating value transmitted by the driver to the steering wheel. The ECU is operable for interrupting the torque overlay operation when the present intent of the driver is determined.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: May 1, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Yong H. Lee, Jihan Ryu, Weiwen Deng
  • Patent number: 8167444
    Abstract: A system and method for automatically correcting the viewing angle of a rear-view mirror on a vehicle when the vehicle is traveling around a curve. The system estimates the curvature of the road using only vehicle speed and vehicle steering angle information. The road curvature estimation is used to determine the radius of curvature of the road, which can then be used to determine the corrected viewing angle of the rear-view mirror. Depending on whether the road is curving to the right or to the left will determine whether the left side rear-view mirror or the right side rear-view mirror will be adjusted.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: May 1, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Jin-Woo Lee, Kwang-Keun Shin, Jihan Ryu, Bakhtiar Brian Litkouhi
  • Publication number: 20120029769
    Abstract: A method to control a vehicle includes monitoring desired vehicle force and moment, monitoring real-time corner constraints upon vehicle dynamics which includes monitoring corner states of health for the vehicle, and monitoring corner capacities for the vehicle. The method further includes determining a desired corner force and moment distribution based upon the desired vehicle force and moment and the real-time corner constraints, and controlling the vehicle based upon the desired corner force and moment distribution.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 2, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Shih-Ken Chen, Weiwen Deng, Youssef A. Ghoneim, Nikolai K. Moshohuk, Flavio Nardi, Jihan Ryu, Kevin A. O'Dea
  • Patent number: 8095309
    Abstract: A vehicle includes a GPS system and a longitudinal accelerometer. Accelerometer corrections are derived based on GPS velocity data. Individual wheel speeds are determined based on GPS velocity data. Longitudinal vehicle velocity may be determined based on accelerometer data or individual wheel speeds.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: January 10, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Jihan Ryu, Cheng-Foo Chen
  • Patent number: 8086367
    Abstract: A system and method for estimating vehicle lateral velocity and surface coefficient of friction using front and rear axle lateral force versus side-slip angle tables and sensor measurements. The sensor measurements include lateral acceleration, yaw-rate, longitudinal speed and steering angle of the vehicle. The method includes calculating front and rear axle lateral forces and front and rear side-slip angles on the axles of the vehicle. The method also includes identifying two equations from the calculated lateral forces and the vehicle measurements. The method provides tables that identify a relationship between the calculated front and rear axle lateral forces and the front and rear side-slip angles, and determines the vehicle lateral velocity and surface coefficient of friction from the tables.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: December 27, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Jihan Ryu, Flavio Nardi, Nikolai K. Moshchuk, Kevin A. O'Dea
  • Patent number: 8078351
    Abstract: A system and method for estimating surface coefficient of friction in a vehicle system. The method includes providing a kinematics relationship between vehicle yaw-rate, vehicle speed, vehicle steering angle and vehicle front and rear axle side-slip angles that is accurate for all surface coefficient of frictions on which the vehicle may be traveling. The method defines a nonlinear function for the front and rear axle side-slip angles relating to front and rear lateral forces and coefficient of friction, and uses the nonlinear function in the kinematics relationship. The method also provides a linear relationship of the front and rear axle side-slip angles and the front and rear lateral forces using the kinematics relationship. The method determines that the vehicle dynamics have become nonlinear using the linear relationship and then estimates the surface coefficient of friction when the vehicle dynamics are nonlinear.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: December 13, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Flavio Nardi, Jihan Ryu, Nikolai K. Moshchuk, Kevin A. O'Dea
  • Patent number: 8073597
    Abstract: A vehicle includes wheels, force sensors adapted for a vertical force and lateral force of each wheel, an onboard device, and a controller. The controller calculates vehicle values using the vertical force and lateral force, compares the values to a corresponding threshold, and automatically deploys the device when each element value does not exceed a corresponding threshold. A method for determining when to deploy an airbag includes measuring a vertical and lateral force at each wheel, and measuring a yaw rate and roll angle. A lateral velocity is calculated using the lateral force, and a lift of each wheel is calculated using the vertical force. The roll angle, roll rate, and stopping time are processed to generate a point on a 3D rollover plane. A rollover energy rate is calculated, and the airbag deploys when the point, rollover energy rate, and lift do not exceed a threshold.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: December 6, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Flavio Nardi, Nikolai K. Moshchuk, Jihan Ryu, Edward McLenon, O Kyung Kwon, Bridget M. O'Brien-Mitchell
  • Patent number: 8050838
    Abstract: A system and method for estimating vehicle lateral velocity. The method uses a kinematic estimator constructed as a closed-loop Leunberger observer. The kinematic estimator is based on a kinematic relationship between lateral acceleration measurement and rate of change of lateral velocity. The method provides measurement updates based on virtual lateral velocity measurements from front and rear axle lateral force versus axle side-slip angle tables using the lateral acceleration, yaw-rate, longitudinal speed, and steering angle measurements. The method calculates front and rear axle lateral forces from the lateral acceleration and yaw-rate measurements. The method estimates front and rear axle side-slip angles from the calculated front and rear axle lateral forces using the tables.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: November 1, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Jihan Ryu, Flavio Nardi, Nikolai K. Moshchuk, Kevin A. O'Dea
  • Publication number: 20110257827
    Abstract: Systems and methods for detecting road bank and determining road bank angle include determining a road bank angle as a function of difference in slip angle where the difference in slip angle is a function of difference in course angle and difference in yaw angle.
    Type: Application
    Filed: April 19, 2010
    Publication date: October 20, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Jihan Ryu, Flavio Nardi, Kevin A. O'Dea, Hualin Tan
  • Publication number: 20110178671
    Abstract: A method to monitor alignment of wheels of a vehicle through analysis of a GPS signal includes monitoring the GPS signal, determining an actual trajectory of the vehicle based upon the GPS signal, monitoring a vehicle sensor indicating an expected change in vehicle heading, determining an expected trajectory of the vehicle based upon the vehicle sensor, and indicating misalignment of the wheels of the vehicle based upon a comparison of the trajectories.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 21, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Hong S. Bae, Jihan Ryu
  • Publication number: 20110128161
    Abstract: A pedestrian warning system includes a sensing device that is provided on the vehicle for detecting a pedestrian within a predetermined zone around the vehicle. A warning device on the vehicle generates a warning signal perceived by the pedestrian outside the vehicle indicating a presence of the vehicle. A speed sensor senses a speed of the vehicle. A controller is configured to receive a signal from the sensing device indicating the detection of the pedestrian within the predetermined zone. The controller determines whether the speed of the vehicle is within a predetermine speed range. The controller actuates the warning device for warning the pedestrian of the close proximity to the vehicle in response to determining the vehicle traveling at a respective speed is within the predetermined speed range and detecting the presence of the pedestrian within the predetermined zone.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 2, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Hong S. Bae, Jihan Ryu
  • Publication number: 20110125455
    Abstract: A system and method for estimating vehicle lateral velocity that defines a relationship between front and rear axle lateral forces and front and rear axle side-slip angles. The method includes providing measurements of vehicle yaw-rate, lateral acceleration, longitudinal speed, and steering angle. The method also includes using these measurements to provide a measurement of the front and rear axle forces. The method calculates a front axle lateral velocity and a rear axle lateral velocity, and calculates a front axle side-slip angle based on the rear axle lateral velocity and a rear axle side-slip angle based on the front axle lateral velocity. The method then estimates front and rear axle forces, and selects a virtual lateral velocity that minimizes an error between the estimated and measured lateral axle forces. The method then provides an estimated vehicle lateral velocity using the selected virtual lateral velocity.
    Type: Application
    Filed: February 1, 2011
    Publication date: May 26, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, LLC
    Inventors: Flavio Nardi, Jihan Ryu, Nikolai K. Moshchuk, Kevin A. O'Dea
  • Publication number: 20110112739
    Abstract: A method is provided for estimating vehicle velocity for a vehicle using a single-antenna global positioning system (GPS). An absolute speed and a course angle of the vehicle is measured using the single-antenna GPS. The yaw rates of the vehicle are measured independently of the GPS. An integrated yaw rate of the vehicle is calculated as a function of the measured yaw rates over a period of time. A yaw angle is determined as a function of a reference yaw angle and the integrated yaw rate. Aside slip angle is calculated as a function of the estimated yaw angle and the course angle provided by the GPS. The vehicle velocity is determined as a function of the absolute speed and the side slip angle. The vehicle velocity is provided to a vehicle dynamic control application.
    Type: Application
    Filed: November 12, 2009
    Publication date: May 12, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Kevin A. O'Dea, Jihan Ryu, Flavio Nardi, Hualin Tan