Patents by Inventor Jin-Seong Park

Jin-Seong Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150290113
    Abstract: The present invention is related to hydrophilic silicone powders and the methods to prepare the same that contain 1-30 mol % of units selected from a group consisting of (a) partially hydrolyzed silsesquioxane containing one hydroxyl group (T2) and silica (Q3), (b) partially hydrolyzed silsesquioxane containing two hydroxyl groups (T1) and silica (Q3), (c) silica containing three hydroxyl groups (Q1), hydrolyzed silicone containing siloxane (D1), and mixtures thereof, and hydrophilic silicone powders consisting of core described above and shells composed of silica, and/or titanium dioxide. The particles are useful as ingredients for cosmetics and emulsions because they have good heat resistance, good touching feeling, and readily disperse in water due to their hydrophilic nature and high water absorbency.
    Type: Application
    Filed: September 24, 2013
    Publication date: October 15, 2015
    Inventors: Ji-Woong Kim, Jin Seong Park, Young Baek Kim
  • Patent number: 9105862
    Abstract: An organic light-emitting display device, which may be configured to prevent moisture or oxygen from penetrating the organic light-emitting display device from the outside is disclosed. An organic light-emitting display device, which is easily applied to a large display device and/or may be easily mass produced is further disclosed. An organic light-emitting display device may include, for example, a thin-film transistor (TFT) including a gate electrode, an active layer insulated from the gate electrode, source and drain electrodes insulated from the gate electrode and contacting the active layer and an insulating layer disposed between the source and drain electrodes and the active layer; and an organic light-emitting diode electrically connected to the TFT. The insulating layer may include, for example, a first insulating layer contacting the active layer; and a second insulating layer formed of a metal oxide and disposed on the first insulating layer.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: August 11, 2015
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Hyun-Joong Chung, Jin-Seong Park, Jong-Han Jeong, Jae-Kyeong Jeong, Yeong-Gon Mo, Min-Kyu Kim, Tae-Kyung Ahn, Hui-Won Yang, Kwang-Suk Kim, Eun-Hyun Kim, Jae-Wook Kang, Jang-Soon Im
  • Patent number: 9039886
    Abstract: A method of transferring graphene includes depositing graphene on a side of at least one metal substrate to provide a metal substrate-graphene layer, stacking a target substrate on a side of the metal substrate-graphene layer to provide a stacked structure in which a side of the target substrate faces the graphene layer, and exposing the stacked structure to an electrolysis bath to remove the metal substrate and transfer the graphene onto the side of the target substrate.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: May 26, 2015
    Assignee: CHEIL INDUSTRIES, INC.
    Inventors: Kuanping Gong, Lijie Ci, Sung-Hee Ahn, Jin-Seong Park, Byeong-Yeol Kim
  • Publication number: 20150137050
    Abstract: A metal-oxide sintered body for a temperature sensor that can be installed in a combustion engine and components connected to the engine in order to sense temperature uses metal oxide. The metal-oxide sintered body has particles with large resistance values and particles with small resistance values mixed therein. The particles with the small resistance values may serve as a main resistance component in the temperature range of 0° C. to 500° C., and the particles with the large resistance values may contribute to the total resistance in proportion to the mixing ratio in the temperature range of 500° C. to 900° C. Thus, the metal-oxide sintered body enables a single sensor to measure all resistances, and can be used in an exhaust device or the like of a motor vehicle that requires temperature measurement over a wide range of temperatures.
    Type: Application
    Filed: May 10, 2013
    Publication date: May 21, 2015
    Inventor: Jin Seong Park
  • Patent number: 9035192
    Abstract: An anisotropic conductive adhesive composite and film include a binder and conductive particles dispersed in the binder. The conductive particles include a copper core particle and a metal coating layer coated on a surface of the corresponding copper core particle.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: May 19, 2015
    Assignee: CHEIL INDUSTRIES, INC.
    Inventors: Gyu Ho Lee, Young Woo Park, Il Rae Cho, Young Hun Kim, Kyoung Soo Park, Jin Seong Park, Dong Seon Uh, Kyung Jin Lee, Kwang Jin Jung
  • Patent number: 8957415
    Abstract: A thin film transistor includes: a gate electrode on a substrate; a source electrode; a drain electrode positioned in a same layer as the source electrode and facing the source electrode; an oxide semiconductor layer positioned between the gate electrode and the source electrode or drain electrode; and a gate insulating layer positioned between the gate electrode and the source electrode or drain electrode. The oxide semiconductor layer includes titanium oxide (TiOx) doped with niobium (Nb).
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: February 17, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Byung Du Ahn, Jun Hyung Lim, Jin Seong Park
  • Publication number: 20140367621
    Abstract: A composite material for a temperature sensor and a method of manufacturing the temperature sensor using the composite material are provided. The composite material contains four or more kinds of metal oxides combined with highly insulating materials to produce a material with semiconductor-like properties to more accurately measure a temperature at high temperatures in the range of 500° C. and above. The sensor includes electrode wires having a predetermined diameter inserted into the metal oxide of the temperature sensor when the metal oxide is press-molded to form the temperature sensor. Through the connection of the electrode wires to the temperature sensor device, disconnection of the electrode wires from the device even at a high temperature.
    Type: Application
    Filed: August 29, 2014
    Publication date: December 18, 2014
    Inventors: Na Yun Ko, Tae Seung Lee, Jin Seong Park
  • Patent number: 8871566
    Abstract: A thin film transistor includes a gate electrode, a first insulating layer on the gate electrode, a semiconductor layer on the gate electrode and separated from the gate electrode by the first insulating layer, the semiconductor layer including a channel region corresponding to the gate electrode, a source region, and a drain region, a hydrogen diffusion barrier layer on the semiconductor layer, the hydrogen diffusion barrier layer covering the channel region and exposing the source and drain regions, and a second insulation layer on the source and drain regions and on the hydrogen diffusion barrier layer, such that the hydrogen diffusion barrier layer is between the second insulation layer and the channel region.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: October 28, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyun-soo Shin, Yeon-gon Mo, Jae-kyeong Jeong, Jin-seong Park, Hun-jung Lee, Jong-han Jeong
  • Patent number: 8840302
    Abstract: A composite material for a temperature sensor and a method of manufacturing the temperature sensor using the composite material are provided. The composite material contains four or more kinds of metal oxides combined with highly insulating materials to produce a material with semiconductor-like properties to more accurately measure a temperature at high temperature in the range of 500° C. and above. The sensor includes electrode wires having a predetermined diameter inserted into the metal oxide of the temperature sensor when the metal oxide is press-molded to form the temperature sensor. Through the connection of the electrode wires to the temperature sensor device, disconnection of the electrode wires from the device even at a high temperature.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: September 23, 2014
    Assignees: Hyundai Motor Company, Industry-Academic Cooperation Foundation, Chosun University
    Inventors: Na Yun Ko, Tae Seung Lee, Jin Seong Park
  • Patent number: 8796679
    Abstract: A method of manufacturing an IGZO active layer includes depositing ions including In, Ga, and Zn from a first target, and depositing ions including In from a second target having a different atomic composition from the first target. The deposition of ions from the second target may be controlled to adjust an atomic % of In in the IGZO layer to be about 45 atomic % to about 80 atomic %.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: August 5, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jong-han Jeong, Jae-kyeong Jeong, Jin-seong Park, Yeon-gon Mo, Hui-won Yang, Min-kyu Kim, Tae-kyung Ahn, Hyun-soo Shin, Hun jung Lee
  • Patent number: 8785243
    Abstract: A method for manufacturing a thin film transistor array panel according to an exemplary embodiment of the present invention includes, forming a gate electrode, a gate insulating layer, and an oxide semiconductor layer on a substrate, first heat treating the substrate comprising the oxide semiconductor layer, forming a source electrode and a drain electrode on the oxide semiconductor layer, the source and drain electrodes facing each other, and forming a passivation layer on the source electrode and the drain electrode. The first heat treating is performed at more than 1 atmosphere and at most 50 or less atmospheres.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: July 22, 2014
    Assignees: Samsung Display Co., Ltd., Industry-Academic Cooperation Foundation Dankook University
    Inventors: Byung Du Ahn, Jun Hyung Lim, Jin Seong Park
  • Patent number: 8772632
    Abstract: A compound for an organic photoelectric device, an organic photoelectric device including the same, and a display device including the same the compound being represented by the following Chemical Formula 1:
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: July 8, 2014
    Assignee: Cheil Industries, Inc.
    Inventors: Kyu-Yeol In, Myeong-Soon Kang, Ho-Kuk Jung, Nam-Soo Kim, Eui-Su Kang, Mi-Young Chae, Jin-Seong Park
  • Patent number: 8729553
    Abstract: A thin film transistor (TFT), a method of fabricating the same, and display device having the TFT of which the TFT includes a metal catalyst layer disposed on a substrate, a semiconductor layer disposed on the metal catalyst layer, a gate insulating layer disposed on the entire surface of the substrate, a gate electrode disposed on the gate insulating layer at a position corresponding to the semiconductor layer, an interlayer insulating layer disposed on the entire surface of the substrate, and source and drain electrodes disposed on the interlayer insulating layer and connected to the semiconductor layer, wherein the metal catalyst layer includes one of carbon, nitrogen, and halogen. The thin film transistor includes a poly-Si layer that may be formed to a smaller thickness than in conventional deposition methods thereby producing a TFT in which the remaining amount of metal catalyst in a semiconductor layer is reduced.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: May 20, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jin-Seong Park, Yeon-Gon Mo, Hye-Dong Kim
  • Patent number: 8659016
    Abstract: A thin film transistor (TFT) using an oxide semiconductor as an active layer, a method of manufacturing the TFT, and a flat panel display device having the TFT include source and drain electrodes formed on a substrate; an active layer formed of an oxide semiconductor disposed on the source and drain electrodes; a gate electrode; and an interfacial stability layer formed on at least one of top and bottom surfaces of the active layer. In the TFT, the interfacial stability layer is formed of an oxide having a band gap of 3.0 to 8.0 eV. Since the interfacial stability layer has the same characteristics as a gate insulating layer and a passivation layer, chemically high interface stability is maintained. Since the interfacial stability layer has a band gap equal to or greater than that of the active layer, charge trapping is physically prevented.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: February 25, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Min-Kyu Kim, Jong-Han Jeong, Tae-Kyung Ahn, Jae-Kyeong Jeong, Yeon-Gon Mo, Jin-Seong Park, Hyun-Joong Chung, Kwang-Suk Kim, Hui-Won Yang
  • Publication number: 20140042374
    Abstract: An anisotropic conductive film includes a binder part, a curing part, an initiator, and conductive particles, wherein the binder part includes at least one of a nitrile butadiene rubber (NBR) resin and a urethane resin, the anisotropic conductive film has a halogen ion content of more than 0 ppm to about 100 ppm.
    Type: Application
    Filed: October 18, 2013
    Publication date: February 13, 2014
    Inventors: Youn Jo KO, Dong Seon UH, Jang Hyun CHO, Jin Seong PARK, Sang Sik BAE, Jin Kyu KIM
  • Publication number: 20140034882
    Abstract: An anisotropic conductive film includes a binder part, a curing part, an initiator, and conductive particles, wherein the binder part includes at least one of a nitrile butadiene rubber (NBR) resin and a urethane resin, wherein the anisotropic conductive film has an electrical conductivity of more than 0 ?S/cm to about 100 ?S/cm.
    Type: Application
    Filed: October 10, 2013
    Publication date: February 6, 2014
    Inventors: Youn Jo KO, Dong Seon UH, Jang Hyun CHO, Jin Seong PARK, Sang Sik BAE, Jin Kyu KIM
  • Publication number: 20130341614
    Abstract: An organic light-emitting display device, which may be configured to prevent moisture or oxygen from penetrating the organic light-emitting display device from the outside is disclosed. An organic light-emitting display device, which is easily applied to a large display device and/or may be easily mass produced is further disclosed. Additionally disclosed is a method of manufacturing an organic light-emitting display device. An organic light-emitting display device may include, for example, a thin-film transistor (TFT) including a gate electrode, an active layer insulated from the gate electrode, source and drain electrodes insulated from the gate electrode and contacting the active layer and an insulating layer disposed between the source and drain electrodes and the active layer; and an organic light-emitting diode electrically connected to the TFT.
    Type: Application
    Filed: August 26, 2013
    Publication date: December 26, 2013
    Inventors: Hyun-Joong CHUNG, Jin-Seong PARK, Jong-Han JEONG, Jae-Kyeong JEONG, Yeon-Gon MO, Min-Kyu KIM, Tae-Kyung AHN, Hui-Won YANG, Kwang-Suk KIM, Eun-Hyun KIM, Jae-Wook KANG, Jae-Soon IM
  • Patent number: 8608985
    Abstract: An anisotropic conductive film includes a binder part, a curing part, an initiator, and conductive particles, wherein the binder part includes at least one of a nitrile butadiene rubber (NBR) resin and a urethane resin, the binder part having an ion content of more than 0 ppm to about 100 ppm.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: December 17, 2013
    Assignee: Cheil Industries, Inc.
    Inventors: Youn Jo Ko, Dong Seon Uh, Jang Hyun Cho, Jin Seong Park, Sang Sik Bae, Jin Kyu Kim
  • Publication number: 20130306965
    Abstract: A thin film transistor includes: a gate electrode on a substrate; a source electrode; a drain electrode positioned in a same layer as the source electrode and facing the source electrode; an oxide semiconductor layer positioned between the gate electrode and the source electrode or drain electrode; and a gate insulating layer positioned between the gate electrode and the source electrode or drain electrode. The oxide semiconductor layer includes titanium oxide (TiOx) doped with niobium (Nb).
    Type: Application
    Filed: October 30, 2012
    Publication date: November 21, 2013
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventors: Byung Du AHN, Jun Hyung LIM, Jin Seong PARK
  • Publication number: 20130308683
    Abstract: Disclosed herein is a composition of a sensor element, a temperature sensor having the composition of the sensor element and a method of manufacturing the temperature sensor. The sensor element composition comprising Y2O3, Al2O3, MnO2, NiO and Fe2O3, and further comprising ZrO2 and a temperature sensor comprising the same. The method comprising: weighing the composition for a sensor element; mixing the composition; calcining the mixture at about 1000° C.—1400° C. for 30 min—5 hrs; pulverizing the calcined mixture to obtain powder; disposing the powder type mixture into a mold; inserting in parallel a plurality of lead wires into the powder type mixture; pressure molding the powder type mixture; and sintering the pressure molded material at about 1300° C.—1500° C. for 30 min—5 hrs.
    Type: Application
    Filed: December 14, 2012
    Publication date: November 21, 2013
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Na-Yun Ko, Tae Seung Lee, Jin-Seong Park, Woon-Young Lee