Patents by Inventor John Edmond

John Edmond has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200211850
    Abstract: A method for removing a portion of a crystalline material (e.g., SiC) substrate includes joining a surface of the substrate to a rigid carrier (e.g., >800 ?m thick), with a subsurface laser damage region provided within the substrate at a depth relative to the surface. Adhesive material having a glass transition temperature above 25° C. may bond the substrate to the carrier. The crystalline material is fractured along the subsurface laser damage region to produce a bonded assembly including the carrier and a portion of the crystalline material. Fracturing of the crystalline material may be promoted by (i) application of a mechanical force proximate to at least one carrier edge to impart a bending moment in the carrier; (ii) cooling the carrier when the carrier has a greater coefficient of thermal expansion than the crystalline material; and/or (iii) applying ultrasonic energy to the crystalline material.
    Type: Application
    Filed: February 12, 2019
    Publication date: July 2, 2020
    Inventors: Matthew Donofrio, John Edmond, Hua-Shuang Kong, Elif Balkas
  • Publication number: 20200140748
    Abstract: A method of increasing production from a hydrocarbon containing formation by adding a proppant to the formation, wherein a treatment fluid comprising a colloidal silica nanoparticle is added to the formation before, during or after the time the proppant is added to the formation is described and claimed.
    Type: Application
    Filed: November 1, 2019
    Publication date: May 7, 2020
    Inventors: John Edmond SOUTHWELL, Yusra Khan AHMAD, David HOLCOMB
  • Publication number: 20200123435
    Abstract: A brine resistant silica sol is described and claimed. This brine resistant silica sol comprises an aqueous colloidal silica mixture that has been surface functionalized with at least one moiety selected from the group consisting of a monomeric hydrophilic organosilane, a mixture of monomeric hydrophilic organosilane(s) and monomeric hydrophobic organosilane(s), or a polysiloxane oligomer, wherein the surface functionalized brine resistant aqueous colloidal silica sol passes at least two of three of these brine resistant tests: API Brine Visual, 24 Hour Seawater Visual and API Turbidity Meter.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 23, 2020
    Inventor: John Edmond SOUTHWELL
  • Patent number: 10611052
    Abstract: Silicon carbide (SiC) wafers and related methods are disclosed that include intentional or imposed wafer shapes that are configured to reduce manufacturing problems associated with deformation, bowing, or sagging of such wafers due to gravitational forces or from preexisting crystal stress. Intentional or imposed wafer shapes may comprise SiC wafers with a relaxed positive bow from silicon faces thereof. In this manner, effects associated with deformation, bowing, or sagging for SiC wafers, and in particular for large area SiC wafers, may be reduced. Related methods for providing SiC wafers with relaxed positive bow are disclosed that provide reduced kerf losses of bulk crystalline material. Such methods may include laser-assisted separation of SiC wafers from bulk crystalline material.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: April 7, 2020
    Assignee: Cree, Inc.
    Inventors: Simon Bubel, Matthew Donofrio, John Edmond, Ian Currier
  • Patent number: 10576585
    Abstract: A method for processing a crystalline substrate to form multiple patterns of subsurface laser damage facilitates subsequent fracture of the substrate to yield first and second substrate portions of reduced thickness. Multiple (e.g., two, three, or more) groups of parallel lines of multiple subsurface laser damage patterns may be sequentially interspersed with one another, with at least some lines of different groups not crossing one another. Certain implementations include formation of multiple subsurface laser damage patterns including groups of parallel lines that are non-parallel to one another, but with each line remaining within ±5 degrees of perpendicular to the <1120> direction of a hexagonal crystal structure of a material of the substrate.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: March 3, 2020
    Assignee: CREE, INC.
    Inventors: Matthew Donofrio, John Edmond, Harshad Golakia
  • Patent number: 10570331
    Abstract: A crude oil recovery chemical fluid is described and claimed. This fluid has been shown to exhibit excellent resistance to salt and high temperatures. This crude oil recovery chemical fluid includes a silane compound, an aqueous silica sol having an average particle diameter of from about 3 nm to about 200 nm, two or more anionic surfactants, and one or more nonionic surfactants.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: February 25, 2020
    Assignee: Nissan Chemical America Corporation
    Inventors: John Edmond Southwell, Satoru Murakami, Isao Oota
  • Patent number: 10563117
    Abstract: A crude oil recovery chemical fluid is described and claimed. This fluid has been shown to exhibit excellent resistance to salt and high temperatures. This crude oil recovery chemical fluid includes a silane compound, an aqueous silica sol having an average particle diameter of from about 3 nm to about 200 nm, two or more anionic surfactants, and one or more nonionic surfactants.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: February 18, 2020
    Assignee: Nissan Chemical America Corporation
    Inventors: John Edmond Southwell, Satoru Murakami, Isao Oota
  • Patent number: 10562130
    Abstract: A crystalline material processing method includes forming subsurface laser damage at a first average depth position to form cracks in the substrate interior propagating outward from at least one subsurface laser damage pattern, followed by imaging the substrate top surface, analyzing the image to identify a condition indicative of presence of uncracked regions within the substrate, and taking one or more actions responsive to the analyzing. One potential action includes changing an instruction set for producing subsequent laser damage formation (at second or subsequent average depth positions), without necessarily forming additional damage at the first depth position. Another potential action includes forming additional subsurface laser damage at the first depth position.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: February 18, 2020
    Assignee: CREE, INC.
    Inventors: Matthew Donofrio, John Edmond, Harshad Golakia, Eric Mayer
  • Patent number: 10557078
    Abstract: A brine resistant silica sol is described and claimed. This brine resistant silica sol comprises an aqueous colloidal silica mixture that has been surface functionalized with at least one moiety selected from the group consisting of a monomeric hydrophilic organosilane, a mixture of monomeric hydrophilic organosilane(s) and monomeric hydrophobic organosilane(s), or a polysiloxane oligomer, wherein the surface functionalized brine resistant aqueous colloidal silica sol passes at least two of three of these brine resistant tests: API Brine Visual, 24 Hour Seawater Visual and API Turbidity Meter.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: February 11, 2020
    Assignee: NISSAN CHEMICAL AMERICA CORPORATION
    Inventor: John Edmond Southwell
  • Patent number: 10529696
    Abstract: At least one array of LEDs (e.g., in a flip chip configuration) is supported by a substrate having a light extraction surface overlaid with at least one lumiphoric material. Light segregation elements registered with gaps between LEDs are configured to reduce interaction between emissions of different LEDs and/or lumiphoric material regions to reduce scattering and/or optical crosstalk, thereby preserving pixel-like resolution of the resulting emissions. Light segregation elements may be formed by mechanical sawing or etching to define grooves or recesses in a substrate, and filling the grooves or recesses with light-reflective or light-absorptive material. Light segregation elements external to a substrate may be defined by photolithographic patterning and etching of a sacrificial material, and/or by 3D printing.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: January 7, 2020
    Assignee: Cree, Inc.
    Inventors: John Edmond, Matthew Donofrio, Jesse Reiherzer, Peter Scott Andrews, Joseph G. Clark, Kevin Haberern
  • Publication number: 20190382645
    Abstract: A hydrocarbon formation treatment micellar solution fluid and its use in treating underperforming hydrocarbon formations is described and claimed. A hydrocarbon formation treatment micellar solution fluid wherein the micellar solution fluid comprises water, a non-terpene oil-based moiety, a brine resistant aqueous colloidal silica sol; and optionally a terpene or a terpenoid, wherein the brine resistant aqueous colloidal silica sol has silica particles with a surface that is functionalized with at least one moiety selected from the group consisting of a hydrophilic organosilane, a mixture of hydrophilic and hydrophobic organosilanes, or a polysiloxane oligomer, wherein the brine resistant aqueous colloidal silica sol passes at least two of three of these brine resistant tests: API Brine Visual, 24 Hour Seawater Visual and API Turbidity Meter, and wherein, when a terpene or terpenoid is present, the ratio of total water to terpene or terpenoid is at least about 15 to 1.
    Type: Application
    Filed: June 26, 2019
    Publication date: December 19, 2019
    Inventors: John Edmond SOUTHWELL, Yusra Khan AHMAD
  • Patent number: 10451251
    Abstract: Lamps and bulbs are disclosed generally comprising different combinations and arrangements of a light source, a reflective optical element, and a separate diffusing layer. This arrangement allows for the fabrication of lamps and bulbs that are efficient, reliable and cost effective and can provide an essentially omni-directional emission pattern, even with a light source comprised of an arrangement of LEDs. The lamps according to the present invention can also comprise thermal management features that provide for efficient dissipation of heat from the LEDs, which in turn allows the LEDs to operate at lower temperatures. The lamps can also comprise optical elements to help change the emission pattern from the generally directional pattern of the LEDs to a more omni-directional pattern.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: October 22, 2019
    Assignee: IDEAL INDUSTRIES LIGHTING, LLC
    Inventors: Michael S. Leung, Eric J. Tarsa, John A. Edmond
  • Patent number: 10439107
    Abstract: This disclosure relates to light emitting devices and methods of manufacture thereof, including side and/or multi-surface light emitting devices. Embodiments according to the present disclosure include the use of a functional layer, which can comprise a stand-off distance with one or more portions of the light emitter to improve the functional layer's stability during further device processing. The functional layer can further comprise winged portions allowing for the coating of the lower side portions of the light emitter to further interact with emitted light and a reflective layer coating on the functional layer to further improve light extraction and light emission uniformity. Methods of manufacture including methods utilizing virtual wafer structures are also disclosed.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: October 8, 2019
    Assignee: Cree, Inc.
    Inventors: Sten Heikman, James Ibbetson, Zhimin Jamie Yao, Fan Zhang, Matthew Donofrio, Christopher P. Hussell, John A. Edmond
  • Patent number: 10421158
    Abstract: A method for processing a crystalline substrate to form multiple patterns of subsurface laser damage facilitates subsequent fracture of the substrate to yield first and second substrate portions of reduced thickness. Multiple (e.g., two, three, or more) groups of parallel lines of multiple subsurface laser damage patterns may be sequentially interspersed with one another, with at least some lines of different groups not crossing one another. Certain implementations include formation of multiple subsurface laser damage patterns including groups of parallel lines that are non-parallel to one another, but with each line remaining within ±5 degrees of perpendicular to the <1120> direction of a hexagonal crystal structure of a material of the substrate.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: September 24, 2019
    Assignee: CREE, INC.
    Inventors: Matthew Donofrio, John Edmond, Harshad Golakia
  • Publication number: 20190273070
    Abstract: At least one array of LEDs (e.g., in a flip chip configuration) is supported by a substrate having a light extraction surface overlaid with at least one lumiphoric material. Light segregation elements registered with gaps between LEDs are configured to reduce interaction between emissions of different LEDs and/or lumiphoric material regions to reduce scattering and/or optical crosstalk, thereby preserving pixel-like resolution of the resulting emissions. Light segregation elements may be formed by mechanical sawing or etching to define grooves or recesses in a substrate, and filling the grooves or recesses with light-reflective or light-absorptive material. Light segregation elements external to a substrate may be defined by photolithographic patterning and etching of a sacrificial material, and/or by 3D printing.
    Type: Application
    Filed: May 16, 2019
    Publication date: September 5, 2019
    Inventors: John Edmond, Matthew Donofrio, Jesse Reiherzer, Peter Scott Andrews, Joseph G. Clark, Kevin Haberern
  • Patent number: 10377942
    Abstract: A hydrocarbon formation treatment micellar solution fluid and its use in treating underperforming hydrocarbon formations is described and claimed. A hydrocarbon formation treatment micellar solution fluid wherein the micellar solution fluid comprises water, a non-terpene oil-based moiety, a brine resistant aqueous colloidal silica sol; and optionally a terpene or a terpenoid, wherein the brine resistant aqueous colloidal silica sol has silica particles with a surface that is functionalized with at least one moiety selected from the group consisting of a hydrophilic organosilane, a mixture of hydrophilic and hydrophobic organosilanes, or a polysiloxane oligomer, wherein the brine resistant aqueous colloidal silica sol passes at least two of three of these brine resistant tests: API Brine Visual, 24 Hour Seawater Visual and API Turbidity Meter, and wherein, when a terpene or terpenoid is present, the ratio of total water to terpene or terpenoid is at least about 15 to 1.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: August 13, 2019
    Assignee: Nissan Chemical America Corporation
    Inventors: John Edmond Southwell, Yusra Khan Ahmad
  • Patent number: 10377557
    Abstract: An aerosolized disinfectant assembly for automatically disinfecting a room with an aerosolized disinfectant includes an aerosol that includes a chemical disinfectant. A canister is provided and the aerosol is contained under pressure within the canister. A fogger is coupled to the canister and the fogger is in fluid communication with an interior of the canister. The fogger is positionable in an open position thereby facilitating the aerosol to be released from the canister and into the room. In this way the chemical disinfectant is distributed around the room to disinfect the room.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: August 13, 2019
    Inventor: John Edmond
  • Publication number: 20190225871
    Abstract: A brine resistant silica sol is described and claimed. This brine resistant silica sol comprises an aqueous colloidal silica mixture that has been surface functionalized with at least one moiety selected from the group consisting of a monomeric hydrophilic organosilane, a mixture of monomeric hydrophilic organosilane(s) and monomeric hydrophobic organosilane(s), or a polysiloxane oligomer, wherein the surface functionalized brine resistant aqueous colloidal silica sol passes at least two of three of these brine resistant tests: API Brine Visual, 24 Hour Seawater Visual and API Turbidity Meter.
    Type: Application
    Filed: April 3, 2019
    Publication date: July 25, 2019
    Inventor: John Edmond SOUTHWELL
  • Patent number: 10312224
    Abstract: At least one array of LEDs (e.g., in a flip chip configuration) is supported by a substrate having a light extraction surface overlaid with at least one lumiphoric material. Light segregation elements registered with gaps between LEDs are configured to reduce interaction between emissions of different LEDs and/or lumiphoric material regions to reduce scattering and/or optical crosstalk, thereby preserving pixel-like resolution of the resulting emissions. Light segregation elements may be formed by mechanical sawing or etching to define grooves or recesses in a substrate, and filling the grooves or recesses with light-reflective or light-absorptive material. Light segregation elements external to a substrate may be defined by photolithographic patterning and etching of a sacrificial material, and/or by 3D printing.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: June 4, 2019
    Assignee: Cree, Inc.
    Inventors: John Edmond, Matthew Donofrio, Jesse Reiherzer, Peter Scott Andrews, Joseph G. Clark, Kevin Haberern
  • Publication number: 20190136123
    Abstract: This invention describes and claims the stimulation of several Wolfcamp and Bone Springs targeted wells in the northern Delaware Basin using fracturing treatments and a new method employing relatively small pre-pad pill volumes of Brine Resistant Silicon Dioxide Nanoparticle Dispersions ahead of each stage of treatment have been successfully performed. The invention includes a method of extending an oil and gas system ESRV comprising the steps of adding a Brine Resistant Silicon Dioxide Nanoparticle Dispersion (“BRINE RESISTANT SDND”) to conventional oil well treatment fluids. The invention also includes a method of increasing initial production rates of an oil well by over 20.0% as compared to wells either not treated with the BRINE RESISTANT SDND technology or treated by conventional nano-emulsion surfactants. The Method focuses on the steps of adding a Brine Resistant Silicon Dioxide Nanoparticle Dispersion to conventional oil well treatment fluids.
    Type: Application
    Filed: November 2, 2018
    Publication date: May 9, 2019
    Inventors: David HOLCOMB, Yusra Khan AHMAD, John Edmond SOUTHWELL