Patents by Inventor John Houston

John Houston has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210121915
    Abstract: The disclosure relates to integrated modules for Synchronized Array of Vibration Actuators (FIG. 125A). The modules provide physical interface, power and communication interfaces. Each module may include vibration actuators (FIG. 123A) which can be precisely attached and aligned to the module housing, a microcontroller or other microprocessor, and one or more sensors for closed loop control of actuators (FIG. 126G). Interleaved pairs of ERMs having a center of mass in the same plane eliminate parasitic torque. A single module can produce a vibration force that rotates at a specific frequency and magnitude, which on its own could cancel out some types of periodic vibrations (FIG. 125B). Two modules paired together and counter-rotating with respect to each other can produce a directional vibration at a specific frequency and magnitude, which could prove even more useful for canceling out a vibration. Such modules are also employed to produce beating patterns (FIGS. 131-133).
    Type: Application
    Filed: September 25, 2020
    Publication date: April 29, 2021
    Applicant: General Vibration Corporation
    Inventors: Nathan Delson, John Houston
  • Publication number: 20210064058
    Abstract: In one embodiment, a method includes determining a fleet-level objective for a vehicle associated with instructing the vehicle to travel a route according to route criteria based on the fleet-level objective. The method includes receiving a ride request from a ride requestor associated with ride criteria including a pick-up location and a drop-off location. The method includes determining that the ride requestor is a passenger for the vehicle to satisfy the fleet-level objective contingent on modifications to the ride criteria. The method includes providing incentives to the ride requestor contingent on acceptance of the modifications to the ride criteria. The method includes, after receiving the acceptance of the modifications to the ride criteria, modifying the ride criteria in accordance with the route criteria. The method includes instructing the vehicle to transport the ride requestor based on the modified ride criteria so as to fulfill the fleet-level objective.
    Type: Application
    Filed: September 14, 2020
    Publication date: March 4, 2021
    Inventors: Farzad Cyrus Foroughi Abari, Aaron Jacob Levine Friedman, John Houston, Adam Hart Reis, Alexander Thomas Starns
  • Publication number: 20210012592
    Abstract: In particular embodiments, a computing system may determine a predicted amount of ride requests for a plurality of collectively-managed vehicles and determine an availability of the collectively-managed vehicles to satisfy the predicted amount of ride requests. Subsequent to determining that the availability fails to satisfy one or more predetermined criteria for servicing the predicted amount of ride requests, the system may determine status information associated with the collectively-managed vehicles and determine, based on at least the status information, one or more minimum services for servicing one or more vehicles among the plurality of collectively-managed vehicles at one or more service centers such that the availability satisfies the one or more predetermined criteria. The system may instruct the one or more vehicles that are to receive the one or more minimum services to travel to the one or more service centers to be serviced.
    Type: Application
    Filed: July 24, 2020
    Publication date: January 14, 2021
    Inventors: Farzad Cyrus Foroughi Abari, Aaron Jacob Levine Friedman, John Houston, Adam Hart Reis, Alexander Thomas Starns
  • Publication number: 20200409378
    Abstract: Systems, methods, and non-transitory computer-readable media can determine a raster representative of a surrounding environment of a vehicle, wherein the raster depicts one or more objects in the surrounding environment of the vehicle. A plurality of trajectory proposals are determined for a first object of the one or more objects. For each trajectory proposal of the plurality of trajectory proposals, a score indicative of a likelihood that the first object will take a trajectory consistent with the trajectory proposal, and an offset for modifying the trajectory proposal are generated.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Applicant: Lyft, Inc.
    Inventors: Michael Jared Benisch, John Houston
  • Publication number: 20200392804
    Abstract: A setting tool and bridge plug that are run-in-hole on wireline through a core bit while drill rods are in place can be used to plug a borehole. A setting tool can be sized to have a same or smaller diameter as a drill rod. A bridge plug can have a run-in configuration of a diameter that is smaller than an inner diameter of a core bit. The bridge plug can have a set configuration that can respond to the setting tool pulling uphole. The bridge plug can be positioned below a drill bit of the drill rod in the set configuration, and the diameter of the bridge plug in the set configuration can be greater than the diameter of the drill rod.
    Type: Application
    Filed: May 7, 2018
    Publication date: December 17, 2020
    Inventors: Robert Alexander Petrie, Michael John Houston, Mark Holly, Jack Gammill Clemens, Grant Spark
  • Publication number: 20200380094
    Abstract: Digital rights management systems and methods for audience measurement are disclosed. Example methods disclosed herein include enabling a media handler implemented by a media device to begin presenting first media based on a first digital license associated with the first media. Such example methods also include retrieving a second digital license different from the first digital license from a license server separate from the media device. Such example methods further include causing the media handler to perform a first media monitoring operation based on the second digital license, the first media monitoring operation being deactivated by default.
    Type: Application
    Filed: June 9, 2020
    Publication date: December 3, 2020
    Inventor: John Houston
  • Patent number: 10843229
    Abstract: The disclosure relates to integrated modules for Synchronized Array of Vibration Actuators (FIG. 125A). The modules provide physical interface, power and communication interfaces. Each module may include vibration actuators (FIG. 123A) which can be precisely attached and aligned to the module housing, a microcontroller or other microprocessor, and one or more sensors for closed loop control of actuators (FIG. 126G). Interleaved pairs of ERMs having a center of mass in the same plane eliminate parasitic torque. A single module can produce a vibration force that rotates at a specific frequency and magnitude, which on its own could cancel out some types of periodic vibrations (FIG. 125B). Two modules paired together and counter-rotating with respect to each other can produce a directional vibration at a specific frequency and magnitude, which could prove even more useful for canceling out a vibration. Such modules are also employed to produce beating patterns (FIGS. 131-133).
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: November 24, 2020
    Assignee: GENERAL VIBRATION CORPORATION
    Inventors: John Houston, Nathan Delson
  • Publication number: 20200356173
    Abstract: Aspects of the technology employ synchronized arrays of low-cost, readily available vibration actuators to emulate and outperform single actuator systems, bringing together sets of actuators to create desired control effects. This approach involves coherent phase switching and modulation of a linear actuator array. A pair of linear resonant actuators (LRAs) may be employed for improved haptic waveform synthesis performance. According to one feature, energy may stored in the mechanical inertia of the LRA via velocity and stiffness of the LRA via displacement and released through modulation of the relative phase of the LRAs. Phase switching and modulation techniques may be used to control more than two LRAs, and in other arrangements than a dual LRA, including, but not limited to architectures that have LRAs arranged in multiple directions in a array spanning, for example, the two dimensions of a plane, or three dimensions of physical space.
    Type: Application
    Filed: November 7, 2018
    Publication date: November 12, 2020
    Inventors: Nikhil Bajaj, George T.-C. Chiu, John Houston, Rob Morris
  • Patent number: 10775806
    Abstract: In one embodiment, a method includes a computing system receiving information from an autonomous vehicle (AV). Based on the received information, the system may identify a target objective, with an associated target destination, for the AV and determine that the AV is able to transport passengers while furthering the target objective. The system may receive multiple ride requests from ride requestors, respectively. Each of the ride requests is associated with an origination location and a destination location. The system may match the AV with one of the ride requests based on a location of the AV, the target destination of the target objective, and the origination location and destination location associated with the ride request. The system may instruct the AV to perform a transportation task from the origination location to the destination location associated with the ride request, and drive to the target destination after completing the transportation task.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: September 15, 2020
    Assignee: Lyft, Inc.
    Inventors: Farzad Cyrus Foroughi Abari, Aaron Jacob Levine Friedman, John Houston, Adam Hart Reis, Alexander Thomas Starns
  • Patent number: 10755301
    Abstract: A method for enhanced digital content presentation is provided that includes assigning, to each member of members of a social network of a user, a respective knowledge score, the knowledge score being representative of accuracy in the member predicting positive impressions of the user. The members of the social network are surveyed for an indication of which one or more options for digital content are expected to have a positive impression on the user. Based on the surveying, selected digital content based on the one or more options that are expected to have a positive impression on the user, as indicated by the surveying, is selected. The selected digital content is presented to the user. An indication of whether the selected digital content had a positive impression on the user is received from the user.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: August 25, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jonathan Fry, Kathleen Chalas, Lahiruka Winter, Cameron Tidd, Alexander Leventhal, John Houston
  • Patent number: 10726644
    Abstract: In particular embodiments, a computing system may generate a prediction of requests for autonomous vehicles in a fleet of collectively managed autonomous vehicles based on a current condition and a future event, the prediction including a predicted request level and a predicted duration of the request level. The system may receive status information from fleet vehicles and identify a vehicle in need of service. The system may receive status information from service centers and identify a service center to service the vehicle. The system may determine a time at which to service the vehicle at the identified service center based on the generated prediction of requests, schedule the vehicle for service at the identified service center at the determined time, and instruct the vehicle to drive to the service center to be serviced at the determined time. In particular embodiments, the prediction of requests may be generated using machine learning.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: July 28, 2020
    Assignee: Lyft, Inc.
    Inventors: Farzad Cyrus Foroughi Abari, Aaron Jacob Levine Friedman, John Houston, Adam Hart Reis, Alexander Thomas Starns
  • Publication number: 20200209857
    Abstract: According to examples, a self-driving vehicle (“SDV”) is operable to select one of (i) an autonomous localization mode, in which the SDV autonomously operates using a localization map, or (ii) an autonomous neural network mode, in which the SDV uses a neural network component that implements one or more machine learning models. The SDV can autonomously operate on at least a segment of a planned route using the selected one of the autonomous localization mode or the autonomous neural network mode.
    Type: Application
    Filed: February 5, 2019
    Publication date: July 2, 2020
    Inventors: Nemanja Djuric, John Houston, Jeffrey Schneider
  • Publication number: 20200164408
    Abstract: The disclosure relates to integrated modules for Synchronized Array of Vibration Actuators (FIG. 125A). The modules provide physical interface, power and communication interfaces. Each module may include vibration actuators (FIG. 123A) which can be precisely attached and aligned to the module housing, a microcontroller or other microprocessor, and one or more sensors for closed loop control of actuators (FIG. 126G). Interleaved pairs of ERMs having a center of mass in the same plane eliminate parasitic torque. A single module can produce a vibration force that rotates at a specific frequency and magnitude, which on its own could cancel out some types of periodic vibrations (FIG. 125B). Two modules paired together and counter-rotating with respect to each other can produce a directional vibration at a specific frequency and magnitude, which could prove even more useful for canceling out a vibration. Such modules are also employed to produce beating patterns (FIGS. 131-133).
    Type: Application
    Filed: September 26, 2019
    Publication date: May 28, 2020
    Inventors: Nathan Delson, John Houston
  • Patent number: 10507493
    Abstract: The disclosure relates to integrated modules for Synchronized Array of Vibration Actuators (FIG. 125A). The modules provide physical interface, power and communication interfaces. Each module may include vibration actuators (FIG. 123A) which can be precisely attached and aligned to the module housing, a microcontroller or other microprocessor, and one or more sensors for closed loop control of actuators (FIG. 126G). Interleaved pairs of ERMs having a center of mass in the same plane eliminate parasitic torque. A single module can produce a vibration force that rotates at a specific frequency and magnitude, which on its own could cancel out some types of periodic vibrations (FIG. 125B). Two modules paired together and counter-rotating with respect to each other can produce a directional vibration at a specific frequency and magnitude, which could prove even more useful for canceling out a vibration. Such modules are also employed to produce beating patterns (FIGS. 131-133).
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: December 17, 2019
    Assignee: General Vibration Corporation
    Inventors: John Houston, Gabe Graham, Charles Alexander Simpkins, Jr., Robert Morris, Nathan Delson
  • Patent number: 10452068
    Abstract: A neural network may be utilized for autonomously driving a self-driving vehicle (SDV). The neural network can establish a destination location in local coordinates relative to the SDV. The neural network may then identify one or more navigation points in a forward operational direction of the SDV, and process sensor data from a sensor system of the SDV, the sensor data providing a sensor view of the forward operational direction of the SDV. Utilizing the sensor data, the neural network can operate acceleration, braking, and steering systems of the SDV to continuously follow the one or more navigation points along an established route to the destination location.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: October 22, 2019
    Assignee: Uber Technologies, Inc.
    Inventors: Nemanja Djuric, John Houston
  • Patent number: 10421100
    Abstract: One aspect of the technology involves a system for measuring the rotational position of a rotating shaft, including a field source configured to generate a measurable field, a sensor configured to measure the generated field, and a target that is configured to modify the generated field as measured by the sensor to have a shape with (a) at least one measurable feature for a zero reference point, and (b) a shape that varies throughout one or more angles such that a rotational position of the shaft is determined with a selected angular accuracy. There is also a device that receives a query for the rotational position of the shaft a device that responds to the query. Another aspect involves generating multi-frequency vibrations with a single linear resonant actuator (LRA). This LRA can exhibit a beat pattern in response to being driven by the sum of two different sinusoidal functions.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: September 24, 2019
    Assignee: General Vibration Corporation
    Inventors: John Houston, Rob Morris, Charles Alexander Simpkins, Jr., Joel A. Murphy, Gabe Graham
  • Publication number: 20190247888
    Abstract: The disclosure relates to integrated modules for Synchronized Array of Vibration Actuators (FIG. 125A). The modules provide physical interface, power and communication interfaces. Each module may include vibration actuators (FIG. 123A) which can be precisely attached and aligned to the module housing, a microcontroller or other microprocessor, and one or more sensors for closed loop control of actuators (FIG. 126G). Interleaved pairs of ERMs having a center of mass in the same plane eliminate parasitic torque. A single module can produce a vibration force that rotates at a specific frequency and magnitude, which on its own could cancel out some types of periodic vibrations (FIG. 125B). Two modules paired together and counter-rotating with respect to each other can produce a directional vibration at a specific frequency and magnitude, which could prove even more useful for canceling out a vibration. Such modules are also employed to produce beating patterns (FIGS. 131-133).
    Type: Application
    Filed: January 16, 2019
    Publication date: August 15, 2019
    Applicant: General Vibration Corporation
    Inventors: John Houston, Gabe Graham, Charles Alexander Simpkins, JR., Robert Morris, Nathan Delson
  • Publication number: 20190196503
    Abstract: In one embodiment, a method includes a computing system receiving information from an autonomous vehicle (AV). Based on the received information, the system may identify a target objective, with an associated target destination, for the AV and determine that the AV is able to transport passengers while furthering the target objective. The system may receive multiple ride requests from ride requestors, respectively. Each of the ride requests is associated with an origination location and a destination location. The system may match the AV with one of the ride requests based on a location of the AV, the target destination of the target objective, and the origination location and destination location associated with the ride request. The system may instruct the AV to perform a transportation task from the origination location to the destination location associated with the ride request, and drive to the target destination after completing the transportation task.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 27, 2019
    Inventors: Farzad Cyrus Foroughi Abari, Aaron Jacob Levine Friedman, John Houston, Adam Hart Reis, Alexander Thomas Starns
  • Publication number: 20190197497
    Abstract: In particular embodiments, a computing system may receive an indication of an impaired sensor component from a first autonomous vehicle. The system may identify a sensor type of the impaired sensor component and determine a suitable service center for servicing the sensor type based on one or more criteria. The system may identify a second autonomous vehicle. The second autonomous vehicle has a functional sensor component of the sensor type. The system may send instructions to the second autonomous vehicle to drive to a location of the first autonomous vehicle and share sensor data from the functional sensor component with the first autonomous vehicle. The first autonomous vehicle may be instructed to drive to the service center location using sensor data of the second autonomous vehicle. The second autonomous vehicle may be instructed to drive to the service center location with the first autonomous vehicle.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 27, 2019
    Inventors: Farzad Cyrus Foroughi Abari, Aaron Jacob Levine Friedman, John Houston, Adam Hart Reis, Alexander Thomas Starns
  • Publication number: 20190197798
    Abstract: In particular embodiments, a computing system may generate a prediction of requests for autonomous vehicles in a fleet of collectively managed autonomous vehicles based on a current condition and a future event, the prediction including a predicted request level and a predicted duration of the request level. The system may receive status information from fleet vehicles and identify a vehicle in need of service. The system may receive status information from service centers and identify a service center to service the vehicle. The system may determine a time at which to service the vehicle at the identified service center based on the generated prediction of requests, schedule the vehicle for service at the identified service center at the determined time, and instruct the vehicle to drive to the service center to be serviced at the determined time. In particular embodiments, the prediction of requests may be generated using machine learning.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 27, 2019
    Inventors: Farzad Cyrus Foroughi Abari, Aaron Jacob Levine Friedman, John Houston, Adam Hart Reis, Alexander Thomas Starns